MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem1 Structured version   Visualization version   GIF version

Theorem lgslem1 24922
Description: When 𝑎 is coprime to the prime 𝑝, 𝑎↑((𝑝 − 1) / 2) is equivalent mod 𝑝 to 1 or -1, and so adding 1 makes it equivalent to 0 or 2. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgslem1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2})

Proof of Theorem lgslem1
StepHypRef Expression
1 eldifi 3710 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
213ad2ant2 1081 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℙ)
3 prmnn 15312 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
42, 3syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℕ)
5 simp1 1059 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℤ)
6 prmz 15313 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
72, 6syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℤ)
8 gcdcom 15159 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 gcd 𝑃) = (𝑃 gcd 𝐴))
95, 7, 8syl2anc 692 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴 gcd 𝑃) = (𝑃 gcd 𝐴))
10 simp3 1061 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ¬ 𝑃𝐴)
11 coprm 15347 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
122, 5, 11syl2anc 692 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
1310, 12mpbid 222 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 gcd 𝐴) = 1)
149, 13eqtrd 2655 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴 gcd 𝑃) = 1)
15 eulerth 15412 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
164, 5, 14, 15syl3anc 1323 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
17 phiprm 15406 . . . . . . . . . 10 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
182, 17syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = (𝑃 − 1))
19 nnm1nn0 11278 . . . . . . . . . 10 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
204, 19syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 − 1) ∈ ℕ0)
2118, 20eqeltrd 2698 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) ∈ ℕ0)
22 zexpcl 12815 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (ϕ‘𝑃) ∈ ℕ0) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
235, 21, 22syl2anc 692 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
24 1zzd 11352 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 1 ∈ ℤ)
25 moddvds 14915 . . . . . . 7 ((𝑃 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑃)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1)))
264, 23, 24, 25syl3anc 1323 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1)))
2716, 26mpbid 222 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1))
2820nn0cnd 11297 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 − 1) ∈ ℂ)
29 2cnd 11037 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ∈ ℂ)
30 2ne0 11057 . . . . . . . . . . . . 13 2 ≠ 0
3130a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ≠ 0)
3228, 29, 31divcan1d 10746 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3318, 32eqtr4d 2658 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = (((𝑃 − 1) / 2) · 2))
3433oveq2d 6620 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) = (𝐴↑(((𝑃 − 1) / 2) · 2)))
355zcnd 11427 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℂ)
36 2nn0 11253 . . . . . . . . . . 11 2 ∈ ℕ0
3736a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ∈ ℕ0)
38 oddprm 15439 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
39383ad2ant2 1081 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝑃 − 1) / 2) ∈ ℕ)
4039nnnn0d 11295 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝑃 − 1) / 2) ∈ ℕ0)
4135, 37, 40expmuld 12951 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑(((𝑃 − 1) / 2) · 2)) = ((𝐴↑((𝑃 − 1) / 2))↑2))
4234, 41eqtrd 2655 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) = ((𝐴↑((𝑃 − 1) / 2))↑2))
4342oveq1d 6619 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − 1) = (((𝐴↑((𝑃 − 1) / 2))↑2) − 1))
44 sq1 12898 . . . . . . . 8 (1↑2) = 1
4544oveq2i 6615 . . . . . . 7 (((𝐴↑((𝑃 − 1) / 2))↑2) − (1↑2)) = (((𝐴↑((𝑃 − 1) / 2))↑2) − 1)
4643, 45syl6eqr 2673 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − 1) = (((𝐴↑((𝑃 − 1) / 2))↑2) − (1↑2)))
47 zexpcl 12815 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
485, 40, 47syl2anc 692 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
4948zcnd 11427 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℂ)
50 ax-1cn 9938 . . . . . . 7 1 ∈ ℂ
51 subsq 12912 . . . . . . 7 (((𝐴↑((𝑃 − 1) / 2)) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴↑((𝑃 − 1) / 2))↑2) − (1↑2)) = (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)))
5249, 50, 51sylancl 693 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2))↑2) − (1↑2)) = (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)))
5346, 52eqtrd 2655 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − 1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)))
5427, 53breqtrd 4639 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)))
5548peano2zd 11429 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ)
56 peano2zm 11364 . . . . . 6 ((𝐴↑((𝑃 − 1) / 2)) ∈ ℤ → ((𝐴↑((𝑃 − 1) / 2)) − 1) ∈ ℤ)
5748, 56syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑((𝑃 − 1) / 2)) − 1) ∈ ℤ)
58 euclemma 15349 . . . . 5 ((𝑃 ∈ ℙ ∧ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ ∧ ((𝐴↑((𝑃 − 1) / 2)) − 1) ∈ ℤ) → (𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)) ↔ (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∨ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1))))
592, 55, 57, 58syl3anc 1323 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)) ↔ (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∨ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1))))
6054, 59mpbid 222 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∨ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
61 dvdsval3 14911 . . . . 5 ((𝑃 ∈ ℕ ∧ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ) → (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ↔ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0))
624, 55, 61syl2anc 692 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ↔ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0))
63 2z 11353 . . . . . . 7 2 ∈ ℤ
6463a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ∈ ℤ)
65 moddvds 14915 . . . . . 6 ((𝑃 ∈ ℕ ∧ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ ∧ 2 ∈ ℤ) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (2 mod 𝑃) ↔ 𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2)))
664, 55, 64, 65syl3anc 1323 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (2 mod 𝑃) ↔ 𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2)))
67 2re 11034 . . . . . . . 8 2 ∈ ℝ
6867a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ∈ ℝ)
694nnrpd 11814 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℝ+)
70 0le2 11055 . . . . . . . 8 0 ≤ 2
7170a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 0 ≤ 2)
72 prmuz2 15332 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
732, 72syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ (ℤ‘2))
74 eluzle 11644 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
7573, 74syl 17 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ≤ 𝑃)
76 eldifsni 4289 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
77763ad2ant2 1081 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ≠ 2)
784nnred 10979 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℝ)
7968, 78ltlend 10126 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (2 < 𝑃 ↔ (2 ≤ 𝑃𝑃 ≠ 2)))
8075, 77, 79mpbir2and 956 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 < 𝑃)
81 modid 12635 . . . . . . 7 (((2 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 𝑃)) → (2 mod 𝑃) = 2)
8268, 69, 71, 80, 81syl22anc 1324 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (2 mod 𝑃) = 2)
8382eqeq2d 2631 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (2 mod 𝑃) ↔ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2))
84 df-2 11023 . . . . . . . 8 2 = (1 + 1)
8584oveq2i 6615 . . . . . . 7 (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2) = (((𝐴↑((𝑃 − 1) / 2)) + 1) − (1 + 1))
8650a1i 11 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 1 ∈ ℂ)
8749, 86, 86pnpcan2d 10374 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) − (1 + 1)) = ((𝐴↑((𝑃 − 1) / 2)) − 1))
8885, 87syl5eq 2667 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2) = ((𝐴↑((𝑃 − 1) / 2)) − 1))
8988breq2d 4625 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
9066, 83, 893bitr3rd 299 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1) ↔ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2))
9162, 90orbi12d 745 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∨ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)) ↔ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2)))
9260, 91mpbid 222 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2))
93 ovex 6632 . . 3 (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ V
9493elpr 4169 . 2 ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2} ↔ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2))
9592, 94sylibr 224 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  w3a 1036   = wceq 1480  wcel 1987  wne 2790  cdif 3552  {csn 4148  {cpr 4150   class class class wbr 4613  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   < clt 10018  cle 10019  cmin 10210   / cdiv 10628  cn 10964  2c2 11014  0cn0 11236  cz 11321  cuz 11631  +crp 11776   mod cmo 12608  cexp 12800  cdvds 14907   gcd cgcd 15140  cprime 15309  ϕcphi 15393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-dvds 14908  df-gcd 15141  df-prm 15310  df-phi 15395
This theorem is referenced by:  lgslem4  24925
  Copyright terms: Public domain W3C validator