MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem3 Structured version   Visualization version   GIF version

Theorem lgslem3 24937
Description: The set 𝑍 of all integers with absolute value at most 1 is closed under multiplication. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgslem2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgslem3 ((𝐴𝑍𝐵𝑍) → (𝐴 · 𝐵) ∈ 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑍(𝑥)

Proof of Theorem lgslem3
StepHypRef Expression
1 zmulcl 11377 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) ∈ ℤ)
21ad2ant2r 782 . . 3 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → (𝐴 · 𝐵) ∈ ℤ)
3 zcn 11333 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
4 zcn 11333 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
5 absmul 13975 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
63, 4, 5syl2an 494 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
76ad2ant2r 782 . . . 4 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
8 abscl 13959 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
9 absge0 13968 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
108, 9jca 554 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
113, 10syl 17 . . . . . . . . 9 (𝐴 ∈ ℤ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
1211adantr 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
13 1red 10006 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 1 ∈ ℝ)
14 abscl 13959 . . . . . . . . . . 11 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ)
15 absge0 13968 . . . . . . . . . . 11 (𝐵 ∈ ℂ → 0 ≤ (abs‘𝐵))
1614, 15jca 554 . . . . . . . . . 10 (𝐵 ∈ ℂ → ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
174, 16syl 17 . . . . . . . . 9 (𝐵 ∈ ℤ → ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
1817adantl 482 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
19 lemul12a 10832 . . . . . . . 8 (((((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ 1 ∈ ℝ) ∧ (((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)) ∧ 1 ∈ ℝ)) → (((abs‘𝐴) ≤ 1 ∧ (abs‘𝐵) ≤ 1) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1)))
2012, 13, 18, 13, 19syl22anc 1324 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((abs‘𝐴) ≤ 1 ∧ (abs‘𝐵) ≤ 1) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1)))
2120imp 445 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((abs‘𝐴) ≤ 1 ∧ (abs‘𝐵) ≤ 1)) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1))
2221an4s 868 . . . . 5 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1))
23 1t1e1 11126 . . . . 5 (1 · 1) = 1
2422, 23syl6breq 4659 . . . 4 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → ((abs‘𝐴) · (abs‘𝐵)) ≤ 1)
257, 24eqbrtrd 4640 . . 3 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → (abs‘(𝐴 · 𝐵)) ≤ 1)
262, 25jca 554 . 2 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → ((𝐴 · 𝐵) ∈ ℤ ∧ (abs‘(𝐴 · 𝐵)) ≤ 1))
27 fveq2 6153 . . . . 5 (𝑥 = 𝐴 → (abs‘𝑥) = (abs‘𝐴))
2827breq1d 4628 . . . 4 (𝑥 = 𝐴 → ((abs‘𝑥) ≤ 1 ↔ (abs‘𝐴) ≤ 1))
29 lgslem2.z . . . 4 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
3028, 29elrab2 3352 . . 3 (𝐴𝑍 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1))
31 fveq2 6153 . . . . 5 (𝑥 = 𝐵 → (abs‘𝑥) = (abs‘𝐵))
3231breq1d 4628 . . . 4 (𝑥 = 𝐵 → ((abs‘𝑥) ≤ 1 ↔ (abs‘𝐵) ≤ 1))
3332, 29elrab2 3352 . . 3 (𝐵𝑍 ↔ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1))
3430, 33anbi12i 732 . 2 ((𝐴𝑍𝐵𝑍) ↔ ((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)))
35 fveq2 6153 . . . 4 (𝑥 = (𝐴 · 𝐵) → (abs‘𝑥) = (abs‘(𝐴 · 𝐵)))
3635breq1d 4628 . . 3 (𝑥 = (𝐴 · 𝐵) → ((abs‘𝑥) ≤ 1 ↔ (abs‘(𝐴 · 𝐵)) ≤ 1))
3736, 29elrab2 3352 . 2 ((𝐴 · 𝐵) ∈ 𝑍 ↔ ((𝐴 · 𝐵) ∈ ℤ ∧ (abs‘(𝐴 · 𝐵)) ≤ 1))
3826, 34, 373imtr4i 281 1 ((𝐴𝑍𝐵𝑍) → (𝐴 · 𝐵) ∈ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  {crab 2911   class class class wbr 4618  cfv 5852  (class class class)co 6610  cc 9885  cr 9886  0cc0 9887  1c1 9888   · cmul 9892  cle 10026  cz 11328  abscabs 13915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-sup 8299  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-z 11329  df-uz 11639  df-rp 11784  df-seq 12749  df-exp 12808  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917
This theorem is referenced by:  lgsfcl2  24941  lgscllem  24942  lgsdirprm  24969
  Copyright terms: Public domain W3C validator