MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem4 Structured version   Visualization version   GIF version

Theorem lgslem4 24920
Description: The function 𝐹 is closed in integers with absolute value less than 1 (namely {-1, 0, 1}, see zabsle1 24916). (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgslem2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgslem4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝑃(𝑥)   𝑍(𝑥)

Proof of Theorem lgslem4
StepHypRef Expression
1 simpll 789 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 𝐴 ∈ ℤ)
2 oddprm 15434 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
32ad2antlr 762 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → ((𝑃 − 1) / 2) ∈ ℕ)
43nnnn0d 11296 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → ((𝑃 − 1) / 2) ∈ ℕ0)
5 zexpcl 12812 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
61, 4, 5syl2anc 692 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
76zred 11426 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℝ)
8 0red 9986 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 0 ∈ ℝ)
9 1red 10000 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 1 ∈ ℝ)
10 eldifi 3715 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
1110ad2antlr 762 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 𝑃 ∈ ℙ)
12 prmuz2 15327 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
1311, 12syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 𝑃 ∈ (ℤ‘2))
14 eluz2b2 11705 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
1513, 14sylib 208 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (𝑃 ∈ ℕ ∧ 1 < 𝑃))
1615simpld 475 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 𝑃 ∈ ℕ)
1716nnrpd 11814 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 𝑃 ∈ ℝ+)
18 0zd 11334 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 0 ∈ ℤ)
19 simpr 477 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 𝑃𝐴)
20 dvdsval3 14906 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝑃𝐴 ↔ (𝐴 mod 𝑃) = 0))
2116, 1, 20syl2anc 692 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (𝑃𝐴 ↔ (𝐴 mod 𝑃) = 0))
2219, 21mpbid 222 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (𝐴 mod 𝑃) = 0)
23 0mod 12638 . . . . . . . . . . 11 (𝑃 ∈ ℝ+ → (0 mod 𝑃) = 0)
2417, 23syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (0 mod 𝑃) = 0)
2522, 24eqtr4d 2663 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (𝐴 mod 𝑃) = (0 mod 𝑃))
26 modexp 12936 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (((𝑃 − 1) / 2) ∈ ℕ0𝑃 ∈ ℝ+) ∧ (𝐴 mod 𝑃) = (0 mod 𝑃)) → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = ((0↑((𝑃 − 1) / 2)) mod 𝑃))
271, 18, 4, 17, 25, 26syl221anc 1334 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = ((0↑((𝑃 − 1) / 2)) mod 𝑃))
2830expd 12961 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (0↑((𝑃 − 1) / 2)) = 0)
2928oveq1d 6620 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → ((0↑((𝑃 − 1) / 2)) mod 𝑃) = (0 mod 𝑃))
3027, 29eqtrd 2660 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (0 mod 𝑃))
31 modadd1 12644 . . . . . . 7 ((((𝐴↑((𝑃 − 1) / 2)) ∈ ℝ ∧ 0 ∈ ℝ) ∧ (1 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (0 mod 𝑃)) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = ((0 + 1) mod 𝑃))
327, 8, 9, 17, 30, 31syl221anc 1334 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = ((0 + 1) mod 𝑃))
33 0p1e1 11077 . . . . . . 7 (0 + 1) = 1
3433oveq1i 6615 . . . . . 6 ((0 + 1) mod 𝑃) = (1 mod 𝑃)
3532, 34syl6eq 2676 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (1 mod 𝑃))
3616nnred 10980 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 𝑃 ∈ ℝ)
3715simprd 479 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 1 < 𝑃)
38 1mod 12639 . . . . . 6 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
3936, 37, 38syl2anc 692 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (1 mod 𝑃) = 1)
4035, 39eqtrd 2660 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 1)
4140oveq1d 6620 . . 3 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (1 − 1))
42 1m1e0 11034 . . . 4 (1 − 1) = 0
43 lgslem2.z . . . . . 6 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
4443lgslem2 24918 . . . . 5 (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍)
4544simp2i 1069 . . . 4 0 ∈ 𝑍
4642, 45eqeltri 2700 . . 3 (1 − 1) ∈ 𝑍
4741, 46syl6eqel 2712 . 2 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
48 lgslem1 24917 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2})
49 elpri 4173 . . . 4 ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2} → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2))
50 oveq1 6612 . . . . . 6 ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (0 − 1))
51 df-neg 10214 . . . . . . 7 -1 = (0 − 1)
5244simp1i 1068 . . . . . . 7 -1 ∈ 𝑍
5351, 52eqeltrri 2701 . . . . . 6 (0 − 1) ∈ 𝑍
5450, 53syl6eqel 2712 . . . . 5 ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
55 oveq1 6612 . . . . . 6 ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (2 − 1))
56 2m1e1 11080 . . . . . . 7 (2 − 1) = 1
5744simp3i 1070 . . . . . . 7 1 ∈ 𝑍
5856, 57eqeltri 2700 . . . . . 6 (2 − 1) ∈ 𝑍
5955, 58syl6eqel 2712 . . . . 5 ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
6054, 59jaoi 394 . . . 4 (((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
6148, 49, 603syl 18 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
62613expa 1262 . 2 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
6347, 62pm2.61dan 831 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1992  {crab 2916  cdif 3557  {csn 4153  {cpr 4155   class class class wbr 4618  cfv 5850  (class class class)co 6605  cr 9880  0cc0 9881  1c1 9882   + caddc 9884   < clt 10019  cle 10020  cmin 10211  -cneg 10212   / cdiv 10629  cn 10965  2c2 11015  0cn0 11237  cz 11322  cuz 11631  +crp 11776   mod cmo 12605  cexp 12797  abscabs 13903  cdvds 14902  cprime 15304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-inf 8294  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-xnn0 11309  df-z 11323  df-uz 11632  df-rp 11777  df-fz 12266  df-fzo 12404  df-fl 12530  df-mod 12606  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-dvds 14903  df-gcd 15136  df-prm 15305  df-phi 15390
This theorem is referenced by:  lgsfcl2  24923
  Copyright terms: Public domain W3C validator