MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsneg Structured version   Visualization version   GIF version

Theorem lgsneg 25899
Description: The Legendre symbol is either even or odd under negation with respect to the second parameter according to the sign of the first. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsneg ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁)))

Proof of Theorem lgsneg
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 4475 . . . . . . . . 9 (𝐴 < 0 → if(𝐴 < 0, -1, 1) = -1)
21adantl 484 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝐴 < 0, -1, 1) = -1)
32oveq1d 7173 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = (-1 · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)))
4 oveq2 7166 . . . . . . . . . 10 (if(𝑁 < 0, -1, 1) = -1 → (-1 · if(𝑁 < 0, -1, 1)) = (-1 · -1))
5 neg1mulneg1e1 11853 . . . . . . . . . 10 (-1 · -1) = 1
64, 5syl6eq 2874 . . . . . . . . 9 (if(𝑁 < 0, -1, 1) = -1 → (-1 · if(𝑁 < 0, -1, 1)) = 1)
7 oveq2 7166 . . . . . . . . . 10 (if(𝑁 < 0, -1, 1) = 1 → (-1 · if(𝑁 < 0, -1, 1)) = (-1 · 1))
8 ax-1cn 10597 . . . . . . . . . . 11 1 ∈ ℂ
98mulm1i 11087 . . . . . . . . . 10 (-1 · 1) = -1
107, 9syl6eq 2874 . . . . . . . . 9 (if(𝑁 < 0, -1, 1) = 1 → (-1 · if(𝑁 < 0, -1, 1)) = -1)
116, 10ifsb 4482 . . . . . . . 8 (-1 · if(𝑁 < 0, -1, 1)) = if(𝑁 < 0, 1, -1)
12 simpr 487 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝐴 < 0)
1312biantrud 534 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ (𝑁 < 0 ∧ 𝐴 < 0)))
1413ifbid 4491 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝑁 < 0, -1, 1) = if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1))
1514oveq2d 7174 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (-1 · if(𝑁 < 0, -1, 1)) = (-1 · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)))
16 simpl3 1189 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝑁 ≠ 0)
1716necomd 3073 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 0 ≠ 𝑁)
18 simpl2 1188 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝑁 ∈ ℤ)
1918zred 12090 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝑁 ∈ ℝ)
20 0re 10645 . . . . . . . . . . . . 13 0 ∈ ℝ
21 ltlen 10743 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑁 < 0 ↔ (𝑁 ≤ 0 ∧ 0 ≠ 𝑁)))
2219, 20, 21sylancl 588 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ (𝑁 ≤ 0 ∧ 0 ≠ 𝑁)))
2317, 22mpbiran2d 706 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ 𝑁 ≤ 0))
2419le0neg1d 11213 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁))
2519renegcld 11069 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → -𝑁 ∈ ℝ)
26 lenlt 10721 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ -𝑁 ∈ ℝ) → (0 ≤ -𝑁 ↔ ¬ -𝑁 < 0))
2720, 25, 26sylancr 589 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (0 ≤ -𝑁 ↔ ¬ -𝑁 < 0))
2823, 24, 273bitrd 307 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ ¬ -𝑁 < 0))
2928ifbid 4491 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝑁 < 0, 1, -1) = if(¬ -𝑁 < 0, 1, -1))
30 ifnot 4519 . . . . . . . . 9 if(¬ -𝑁 < 0, 1, -1) = if(-𝑁 < 0, -1, 1)
3129, 30syl6eq 2874 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝑁 < 0, 1, -1) = if(-𝑁 < 0, -1, 1))
3211, 15, 313eqtr3a 2882 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (-1 · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if(-𝑁 < 0, -1, 1))
3312biantrud 534 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (-𝑁 < 0 ↔ (-𝑁 < 0 ∧ 𝐴 < 0)))
3433ifbid 4491 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(-𝑁 < 0, -1, 1) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1))
353, 32, 343eqtrd 2862 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1))
36 1t1e1 11802 . . . . . . 7 (1 · 1) = 1
37 iffalse 4478 . . . . . . . . 9 𝐴 < 0 → if(𝐴 < 0, -1, 1) = 1)
3837adantl 484 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → if(𝐴 < 0, -1, 1) = 1)
39 simpr 487 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → ¬ 𝐴 < 0)
4039intnand 491 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → ¬ (𝑁 < 0 ∧ 𝐴 < 0))
4140iffalsed 4480 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1)
4238, 41oveq12d 7176 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = (1 · 1))
4339intnand 491 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → ¬ (-𝑁 < 0 ∧ 𝐴 < 0))
4443iffalsed 4480 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1)
4536, 42, 443eqtr4a 2884 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1))
4635, 45pm2.61dan 811 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1))
4746eqcomd 2829 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)))
48 simpr 487 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
49 simpl2 1188 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈ ℤ)
50 zq 12357 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
5149, 50syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈ ℚ)
52 pcneg 16212 . . . . . . . . . 10 ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑛 pCnt -𝑁) = (𝑛 pCnt 𝑁))
5348, 51, 52syl2anc 586 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt -𝑁) = (𝑛 pCnt 𝑁))
5453oveq2d 7174 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)))
5554ifeq1da 4499 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1) = if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
5655mpteq2dv 5164 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))
5756seqeq3d 13380 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))))
58 zcn 11989 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
59583ad2ant2 1130 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℂ)
6059absnegd 14811 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘-𝑁) = (abs‘𝑁))
6157, 60fveq12d 6679 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))
6247, 61oveq12d 7176 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁))) = ((if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
63 neg1cn 11754 . . . . . 6 -1 ∈ ℂ
6463, 8ifcli 4515 . . . . 5 if(𝐴 < 0, -1, 1) ∈ ℂ
6564a1i 11 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if(𝐴 < 0, -1, 1) ∈ ℂ)
6663, 8ifcli 4515 . . . . 5 if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ
6766a1i 11 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ)
68 nnabscl 14687 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
69683adant1 1126 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
70 nnuz 12284 . . . . . . 7 ℕ = (ℤ‘1)
7169, 70eleqtrdi 2925 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ (ℤ‘1))
72 eqid 2823 . . . . . . . 8 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
7372lgsfcl3 25896 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
74 elfznn 12939 . . . . . . 7 (𝑥 ∈ (1...(abs‘𝑁)) → 𝑥 ∈ ℕ)
75 ffvelrn 6851 . . . . . . 7 (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ ∧ 𝑥 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑥) ∈ ℤ)
7673, 74, 75syl2an 597 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑥 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑥) ∈ ℤ)
77 zmulcl 12034 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
7877adantl 484 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
7971, 76, 78seqcl 13393 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℤ)
8079zcnd 12091 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ)
8165, 67, 80mulassd 10666 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) = (if(𝐴 < 0, -1, 1) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
8262, 81eqtrd 2858 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁))) = (if(𝐴 < 0, -1, 1) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
83 simp1 1132 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℤ)
84 znegcl 12020 . . . 4 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
85843ad2ant2 1130 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → -𝑁 ∈ ℤ)
86 simp3 1134 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0)
8759, 86negne0d 10997 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → -𝑁 ≠ 0)
88 eqid 2823 . . . 4 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1))
8988lgsval4 25895 . . 3 ((𝐴 ∈ ℤ ∧ -𝑁 ∈ ℤ ∧ -𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁))))
9083, 85, 87, 89syl3anc 1367 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁))))
9172lgsval4 25895 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
9291oveq2d 7174 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁)) = (if(𝐴 < 0, -1, 1) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
9382, 90, 923eqtr4d 2868 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  ifcif 4469   class class class wbr 5068  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   · cmul 10544   < clt 10677  cle 10678  -cneg 10873  cn 11640  cz 11984  cuz 12246  cq 12351  ...cfz 12895  seqcseq 13372  cexp 13432  abscabs 14595  cprime 16017   pCnt cpc 16175   /L clgs 25872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-dvds 15610  df-gcd 15846  df-prm 16018  df-phi 16105  df-pc 16176  df-lgs 25873
This theorem is referenced by:  lgsneg1  25900
  Copyright terms: Public domain W3C validator