![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lgsprme0 | Structured version Visualization version GIF version |
Description: The Legendre symbol at any prime (even at 2) is 0 iff the prime does not divide the first argument. See definition in [ApostolNT] p. 179. (Contributed by AV, 20-Jul-2021.) |
Ref | Expression |
---|---|
lgsprme0 | ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmz 15611 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
2 | lgsne0 25280 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1)) | |
3 | 1, 2 | sylan2 492 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1)) |
4 | coprm 15645 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃 ∥ 𝐴 ↔ (𝑃 gcd 𝐴) = 1)) | |
5 | 4 | ancoms 468 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (¬ 𝑃 ∥ 𝐴 ↔ (𝑃 gcd 𝐴) = 1)) |
6 | 1 | anim1i 593 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ)) |
7 | 6 | ancoms 468 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ)) |
8 | gcdcom 15457 | . . . . . 6 ⊢ ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃)) |
10 | 9 | eqeq1d 2762 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝑃 gcd 𝐴) = 1 ↔ (𝐴 gcd 𝑃) = 1)) |
11 | 5, 10 | bitr2d 269 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ 𝐴)) |
12 | prmnn 15610 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
13 | dvdsval3 15206 | . . . . . 6 ⊢ ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ 𝐴 ↔ (𝐴 mod 𝑃) = 0)) | |
14 | 12, 13 | sylan 489 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ 𝐴 ↔ (𝐴 mod 𝑃) = 0)) |
15 | 14 | ancoms 468 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑃 ∥ 𝐴 ↔ (𝐴 mod 𝑃) = 0)) |
16 | 15 | notbid 307 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (¬ 𝑃 ∥ 𝐴 ↔ ¬ (𝐴 mod 𝑃) = 0)) |
17 | 3, 11, 16 | 3bitrd 294 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) ≠ 0 ↔ ¬ (𝐴 mod 𝑃) = 0)) |
18 | 17 | necon4abid 2972 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 class class class wbr 4804 (class class class)co 6814 0cc0 10148 1c1 10149 ℕcn 11232 ℤcz 11589 mod cmo 12882 ∥ cdvds 15202 gcd cgcd 15438 ℙcprime 15607 /L clgs 25239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-2o 7731 df-oadd 7734 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-sup 8515 df-inf 8516 df-card 8975 df-cda 9202 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-n0 11505 df-xnn0 11576 df-z 11590 df-uz 11900 df-q 12002 df-rp 12046 df-fz 12540 df-fzo 12680 df-fl 12807 df-mod 12883 df-seq 13016 df-exp 13075 df-hash 13332 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-dvds 15203 df-gcd 15439 df-prm 15608 df-phi 15693 df-pc 15764 df-lgs 25240 |
This theorem is referenced by: lgsqrmodndvds 25298 |
Copyright terms: Public domain | W3C validator |