Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpat Structured version   Visualization version   GIF version

Theorem lhpat 35824
Description: Create an atom under a co-atom. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 23-May-2012.)
Hypotheses
Ref Expression
lhpat.l = (le‘𝐾)
lhpat.j = (join‘𝐾)
lhpat.m = (meet‘𝐾)
lhpat.a 𝐴 = (Atoms‘𝐾)
lhpat.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)

Proof of Theorem lhpat
StepHypRef Expression
1 simp1l 1237 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝐾 ∈ HL)
2 simp2l 1239 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑃𝐴)
3 simp3l 1241 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑄𝐴)
4 simp1r 1238 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑊𝐻)
5 eqid 2752 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6 lhpat.h . . . 4 𝐻 = (LHyp‘𝐾)
75, 6lhpbase 35779 . . 3 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
84, 7syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑊 ∈ (Base‘𝐾))
9 simp3r 1242 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑃𝑄)
10 eqid 2752 . . . 4 (1.‘𝐾) = (1.‘𝐾)
11 eqid 2752 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
1210, 11, 6lhp1cvr 35780 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
13123ad2ant1 1127 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
14 simp2r 1240 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ¬ 𝑃 𝑊)
15 lhpat.l . . 3 = (le‘𝐾)
16 lhpat.j . . 3 = (join‘𝐾)
17 lhpat.m . . 3 = (meet‘𝐾)
18 lhpat.a . . 3 𝐴 = (Atoms‘𝐾)
195, 15, 16, 17, 10, 11, 181cvrat 35257 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑊 ∈ (Base‘𝐾)) ∧ (𝑃𝑄𝑊( ⋖ ‘𝐾)(1.‘𝐾) ∧ ¬ 𝑃 𝑊)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
201, 2, 3, 8, 9, 13, 14, 19syl133anc 1496 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072   = wceq 1624  wcel 2131  wne 2924   class class class wbr 4796  cfv 6041  (class class class)co 6805  Basecbs 16051  lecple 16142  joincjn 17137  meetcmee 17138  1.cp1 17231  ccvr 35044  Atomscatm 35045  HLchlt 35132  LHypclh 35765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-preset 17121  df-poset 17139  df-plt 17151  df-lub 17167  df-glb 17168  df-join 17169  df-meet 17170  df-p0 17232  df-p1 17233  df-lat 17239  df-clat 17301  df-oposet 34958  df-ol 34960  df-oml 34961  df-covers 35048  df-ats 35049  df-atl 35080  df-cvlat 35104  df-hlat 35133  df-lhyp 35769
This theorem is referenced by:  lhpat2  35826  4atexlemex6  35855  trlat  35951  cdlemc5  35977  cdleme3e  36014  cdleme7b  36026  cdleme11k  36050  cdleme16e  36064  cdleme16f  36065  cdlemeda  36080  cdleme22cN  36124  cdleme22d  36125  cdleme23b  36132  cdlemf2  36344  cdlemg12g  36431  cdlemg17dALTN  36446  cdlemg19a  36465
  Copyright terms: Public domain W3C validator