Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpex2leN Structured version   Visualization version   GIF version

Theorem lhpex2leN 34814
 Description: There exist at least two different atoms under a co-atom. This allows us to create a line under the co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhp2at.l = (le‘𝐾)
lhp2at.a 𝐴 = (Atoms‘𝐾)
lhp2at.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpex2leN ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞))
Distinct variable groups:   𝑞,𝑝,𝐴   𝐻,𝑝,𝑞   𝐾,𝑝,𝑞   ,𝑝,𝑞   𝑊,𝑝,𝑞

Proof of Theorem lhpex2leN
StepHypRef Expression
1 simprr 795 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑝 𝑊)) → 𝑝 𝑊)
2 lhp2at.l . . . . . 6 = (le‘𝐾)
3 lhp2at.a . . . . . 6 𝐴 = (Atoms‘𝐾)
4 lhp2at.h . . . . . 6 𝐻 = (LHyp‘𝐾)
52, 3, 4lhpexle1 34809 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝))
65adantr 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑝 𝑊)) → ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝))
71, 6jca 554 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑝 𝑊)) → (𝑝 𝑊 ∧ ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝)))
8 necom 2843 . . . . . . 7 (𝑝𝑞𝑞𝑝)
983anbi3i 1253 . . . . . 6 ((𝑝 𝑊𝑞 𝑊𝑝𝑞) ↔ (𝑝 𝑊𝑞 𝑊𝑞𝑝))
10 3anass 1040 . . . . . 6 ((𝑝 𝑊𝑞 𝑊𝑞𝑝) ↔ (𝑝 𝑊 ∧ (𝑞 𝑊𝑞𝑝)))
119, 10bitri 264 . . . . 5 ((𝑝 𝑊𝑞 𝑊𝑝𝑞) ↔ (𝑝 𝑊 ∧ (𝑞 𝑊𝑞𝑝)))
1211rexbii 3035 . . . 4 (∃𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞) ↔ ∃𝑞𝐴 (𝑝 𝑊 ∧ (𝑞 𝑊𝑞𝑝)))
13 r19.42v 3085 . . . 4 (∃𝑞𝐴 (𝑝 𝑊 ∧ (𝑞 𝑊𝑞𝑝)) ↔ (𝑝 𝑊 ∧ ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝)))
1412, 13bitr2i 265 . . 3 ((𝑝 𝑊 ∧ ∃𝑞𝐴 (𝑞 𝑊𝑞𝑝)) ↔ ∃𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞))
157, 14sylib 208 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑝 𝑊)) → ∃𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞))
162, 3, 4lhpexle 34806 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 𝑝 𝑊)
1715, 16reximddv 3013 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∃wrex 2908   class class class wbr 4618  ‘cfv 5852  lecple 15880  Atomscatm 34065  HLchlt 34152  LHypclh 34785 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-preset 16860  df-poset 16878  df-plt 16890  df-lub 16906  df-glb 16907  df-join 16908  df-meet 16909  df-p0 16971  df-p1 16972  df-lat 16978  df-clat 17040  df-oposet 33978  df-ol 33980  df-oml 33981  df-covers 34068  df-ats 34069  df-atl 34100  df-cvlat 34124  df-hlat 34153  df-lhyp 34789 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator