Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle1 Structured version   Visualization version   GIF version

Theorem lhpexle1 34774
Description: There exists an atom under a co-atom different from any given element. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l = (le‘𝐾)
lhpex1.a 𝐴 = (Atoms‘𝐾)
lhpex1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexle1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   𝑊,𝑝   𝑋,𝑝

Proof of Theorem lhpexle1
StepHypRef Expression
1 lhpex1.l . . . . 5 = (le‘𝐾)
2 lhpex1.a . . . . 5 𝐴 = (Atoms‘𝐾)
3 lhpex1.h . . . . 5 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexle 34771 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 𝑝 𝑊)
5 tru 1484 . . . . . 6
65jctr 564 . . . . 5 (𝑝 𝑊 → (𝑝 𝑊 ∧ ⊤))
76reximi 3005 . . . 4 (∃𝑝𝐴 𝑝 𝑊 → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤))
84, 7syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤))
9 simpll 789 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → 𝐾 ∈ HL)
10 simprl 793 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑋𝐴)
11 eqid 2621 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1211, 3lhpbase 34764 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1312ad2antlr 762 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑊 ∈ (Base‘𝐾))
14 eqid 2621 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
151, 14, 2, 3lhplt 34766 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑋(lt‘𝐾)𝑊)
1611, 14, 22atlt 34205 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑊 ∈ (Base‘𝐾)) ∧ 𝑋(lt‘𝐾)𝑊) → ∃𝑝𝐴 (𝑝𝑋𝑝(lt‘𝐾)𝑊))
179, 10, 13, 15, 16syl31anc 1326 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝𝑋𝑝(lt‘𝐾)𝑊))
18 simp3r 1088 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑝(lt‘𝐾)𝑊)
19 simp1ll 1122 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝐾 ∈ HL)
20 simp2 1060 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑝𝐴)
21 simp1lr 1123 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑊𝐻)
221, 14pltle 16882 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑊𝐻) → (𝑝(lt‘𝐾)𝑊𝑝 𝑊))
2319, 20, 21, 22syl3anc 1323 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → (𝑝(lt‘𝐾)𝑊𝑝 𝑊))
2418, 23mpd 15 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑝 𝑊)
25 a1tru 1497 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → ⊤)
26 simp3l 1087 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑝𝑋)
2724, 25, 263jca 1240 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋))
28273expia 1264 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴) → ((𝑝𝑋𝑝(lt‘𝐾)𝑊) → (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋)))
2928reximdva 3011 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → (∃𝑝𝐴 (𝑝𝑋𝑝(lt‘𝐾)𝑊) → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋)))
3017, 29mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋))
318, 30lhpexle1lem 34773 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋))
32 3simpb 1057 . . 3 ((𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋) → (𝑝 𝑊𝑝𝑋))
3332reximi 3005 . 2 (∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
3431, 33syl 17 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wtru 1481  wcel 1987  wne 2790  wrex 2908   class class class wbr 4613  cfv 5847  Basecbs 15781  lecple 15869  ltcplt 16862  Atomscatm 34030  HLchlt 34117  LHypclh 34750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-preset 16849  df-poset 16867  df-plt 16879  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p0 16960  df-p1 16961  df-lat 16967  df-clat 17029  df-oposet 33943  df-ol 33945  df-oml 33946  df-covers 34033  df-ats 34034  df-atl 34065  df-cvlat 34089  df-hlat 34118  df-lhyp 34754
This theorem is referenced by:  lhpexle2lem  34775  lhpexle2  34776  lhpex2leN  34779
  Copyright terms: Public domain W3C validator