![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpjat1 | Structured version Visualization version GIF version |
Description: The join of a co-atom (hyperplane) and an atom not under it is the lattice unit. (Contributed by NM, 18-May-2012.) |
Ref | Expression |
---|---|
lhpjat.l | ⊢ ≤ = (le‘𝐾) |
lhpjat.j | ⊢ ∨ = (join‘𝐾) |
lhpjat.u | ⊢ 1 = (1.‘𝐾) |
lhpjat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhpjat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpjat1 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ 𝑃) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 807 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ HL) | |
2 | eqid 2760 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | lhpjat.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 2, 3 | lhpbase 35805 | . . 3 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
5 | 4 | ad2antlr 765 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
6 | simprl 811 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) | |
7 | lhpjat.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
8 | eqid 2760 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
9 | 7, 8, 3 | lhp1cvr 35806 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊( ⋖ ‘𝐾) 1 ) |
10 | 9 | adantr 472 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊( ⋖ ‘𝐾) 1 ) |
11 | simprr 813 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ 𝑃 ≤ 𝑊) | |
12 | lhpjat.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
13 | lhpjat.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
14 | lhpjat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
15 | 2, 12, 13, 7, 8, 14 | 1cvrjat 35282 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ (Base‘𝐾) ∧ 𝑃 ∈ 𝐴) ∧ (𝑊( ⋖ ‘𝐾) 1 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ 𝑃) = 1 ) |
16 | 1, 5, 6, 10, 11, 15 | syl32anc 1485 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ 𝑃) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 lecple 16170 joincjn 17165 1.cp1 17259 ⋖ ccvr 35070 Atomscatm 35071 HLchlt 35158 LHypclh 35791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-preset 17149 df-poset 17167 df-plt 17179 df-lub 17195 df-glb 17196 df-join 17197 df-meet 17198 df-p0 17260 df-p1 17261 df-lat 17267 df-clat 17329 df-oposet 34984 df-ol 34986 df-oml 34987 df-covers 35074 df-ats 35075 df-atl 35106 df-cvlat 35130 df-hlat 35159 df-lhyp 35795 |
This theorem is referenced by: lhpjat2 35828 lhpj1 35829 trljat1 35974 trljat2 35975 cdlemc1 35999 cdlemc6 36004 cdleme20c 36119 cdleme20j 36126 trlcolem 36534 |
Copyright terms: Public domain | W3C validator |