Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpjat1 Structured version   Visualization version   GIF version

Theorem lhpjat1 34786
 Description: The join of a co-atom (hyperplane) and an atom not under it is the lattice unit. (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
lhpjat.l = (le‘𝐾)
lhpjat.j = (join‘𝐾)
lhpjat.u 1 = (1.‘𝐾)
lhpjat.a 𝐴 = (Atoms‘𝐾)
lhpjat.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpjat1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑊 𝑃) = 1 )

Proof of Theorem lhpjat1
StepHypRef Expression
1 simpll 789 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
2 eqid 2621 . . . 4 (Base‘𝐾) = (Base‘𝐾)
3 lhpjat.h . . . 4 𝐻 = (LHyp‘𝐾)
42, 3lhpbase 34764 . . 3 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
54ad2antlr 762 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
6 simprl 793 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
7 lhpjat.u . . . 4 1 = (1.‘𝐾)
8 eqid 2621 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
97, 8, 3lhp1cvr 34765 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊( ⋖ ‘𝐾) 1 )
109adantr 481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊( ⋖ ‘𝐾) 1 )
11 simprr 795 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ 𝑃 𝑊)
12 lhpjat.l . . 3 = (le‘𝐾)
13 lhpjat.j . . 3 = (join‘𝐾)
14 lhpjat.a . . 3 𝐴 = (Atoms‘𝐾)
152, 12, 13, 7, 8, 141cvrjat 34241 . 2 (((𝐾 ∈ HL ∧ 𝑊 ∈ (Base‘𝐾) ∧ 𝑃𝐴) ∧ (𝑊( ⋖ ‘𝐾) 1 ∧ ¬ 𝑃 𝑊)) → (𝑊 𝑃) = 1 )
161, 5, 6, 10, 11, 15syl32anc 1331 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑊 𝑃) = 1 )
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   class class class wbr 4613  ‘cfv 5847  (class class class)co 6604  Basecbs 15781  lecple 15869  joincjn 16865  1.cp1 16959   ⋖ ccvr 34029  Atomscatm 34030  HLchlt 34117  LHypclh 34750 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-preset 16849  df-poset 16867  df-plt 16879  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p0 16960  df-p1 16961  df-lat 16967  df-clat 17029  df-oposet 33943  df-ol 33945  df-oml 33946  df-covers 34033  df-ats 34034  df-atl 34065  df-cvlat 34089  df-hlat 34118  df-lhyp 34754 This theorem is referenced by:  lhpjat2  34787  lhpj1  34788  trljat1  34933  trljat2  34934  cdlemc1  34958  cdlemc6  34963  cdleme20c  35079  cdleme20j  35086  trlcolem  35494
 Copyright terms: Public domain W3C validator