Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmcvr4N Structured version   Visualization version   GIF version

Theorem lhpmcvr4N 34789
Description: Specialization of lhpmcvr2 34787. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhpmcvr2.b 𝐵 = (Base‘𝐾)
lhpmcvr2.l = (le‘𝐾)
lhpmcvr2.j = (join‘𝐾)
lhpmcvr2.m = (meet‘𝐾)
lhpmcvr2.a 𝐴 = (Atoms‘𝐾)
lhpmcvr2.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmcvr4N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → ¬ 𝑃 𝑌)

Proof of Theorem lhpmcvr4N
StepHypRef Expression
1 simp2rr 1129 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → ¬ 𝑃 𝑊)
2 simp33 1097 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → 𝑃 𝑋)
3 simp1l 1083 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → 𝐾 ∈ HL)
4 hllat 34127 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
53, 4syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → 𝐾 ∈ Lat)
6 simp2rl 1128 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → 𝑃𝐴)
7 lhpmcvr2.b . . . . . . . 8 𝐵 = (Base‘𝐾)
8 lhpmcvr2.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
97, 8atbase 34053 . . . . . . 7 (𝑃𝐴𝑃𝐵)
106, 9syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → 𝑃𝐵)
11 simp2ll 1126 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → 𝑋𝐵)
12 simp31 1095 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → 𝑌𝐵)
13 lhpmcvr2.l . . . . . . 7 = (le‘𝐾)
14 lhpmcvr2.m . . . . . . 7 = (meet‘𝐾)
157, 13, 14latlem12 16999 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑋𝐵𝑌𝐵)) → ((𝑃 𝑋𝑃 𝑌) ↔ 𝑃 (𝑋 𝑌)))
165, 10, 11, 12, 15syl13anc 1325 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → ((𝑃 𝑋𝑃 𝑌) ↔ 𝑃 (𝑋 𝑌)))
1716biimpd 219 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → ((𝑃 𝑋𝑃 𝑌) → 𝑃 (𝑋 𝑌)))
182, 17mpand 710 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → (𝑃 𝑌𝑃 (𝑋 𝑌)))
19 simp32 1096 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → (𝑋 𝑌) 𝑊)
207, 14latmcl 16973 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
215, 11, 12, 20syl3anc 1323 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → (𝑋 𝑌) ∈ 𝐵)
22 simp1r 1084 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → 𝑊𝐻)
23 lhpmcvr2.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
247, 23lhpbase 34761 . . . . . 6 (𝑊𝐻𝑊𝐵)
2522, 24syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → 𝑊𝐵)
267, 13lattr 16977 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃𝐵 ∧ (𝑋 𝑌) ∈ 𝐵𝑊𝐵)) → ((𝑃 (𝑋 𝑌) ∧ (𝑋 𝑌) 𝑊) → 𝑃 𝑊))
275, 10, 21, 25, 26syl13anc 1325 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → ((𝑃 (𝑋 𝑌) ∧ (𝑋 𝑌) 𝑊) → 𝑃 𝑊))
2819, 27mpan2d 709 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → (𝑃 (𝑋 𝑌) → 𝑃 𝑊))
2918, 28syld 47 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → (𝑃 𝑌𝑃 𝑊))
301, 29mtod 189 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → ¬ 𝑃 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4613  cfv 5847  (class class class)co 6604  Basecbs 15781  lecple 15869  joincjn 16865  meetcmee 16866  Latclat 16966  Atomscatm 34027  HLchlt 34114  LHypclh 34747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-poset 16867  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-lat 16967  df-ats 34031  df-atl 34062  df-cvlat 34086  df-hlat 34115  df-lhyp 34751
This theorem is referenced by:  lhpmcvr5N  34790  dihmeetlem17N  36089
  Copyright terms: Public domain W3C validator