Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhprelat3N Structured version   Visualization version   GIF version

Theorem lhprelat3N 37180
Description: The Hilbert lattice is relatively atomic with respect to co-atoms (lattice hyperplanes). Dual version of hlrelat3 36552. (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhprelat3.b 𝐵 = (Base‘𝐾)
lhprelat3.l = (le‘𝐾)
lhprelat3.s < = (lt‘𝐾)
lhprelat3.m = (meet‘𝐾)
lhprelat3.c 𝐶 = ( ⋖ ‘𝐾)
lhprelat3.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhprelat3N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
Distinct variable groups:   𝑤,𝐶   𝑤,𝐻   𝑤,𝐾   𝑤,   𝑤,   𝑤,𝑋   𝑤,𝑌
Allowed substitution hints:   𝐵(𝑤)   < (𝑤)

Proof of Theorem lhprelat3N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Atoms‘𝐾))
2 simpll1 1208 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
3 lhprelat3.b . . . . . . . 8 𝐵 = (Base‘𝐾)
4 eqid 2824 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
53, 4atbase 36429 . . . . . . 7 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
65adantl 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝𝐵)
7 eqid 2824 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
8 lhprelat3.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
93, 7, 4, 8lhpoc2N 37155 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝𝐵) → (𝑝 ∈ (Atoms‘𝐾) ↔ ((oc‘𝐾)‘𝑝) ∈ 𝐻))
102, 6, 9syl2anc 586 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝 ∈ (Atoms‘𝐾) ↔ ((oc‘𝐾)‘𝑝) ∈ 𝐻))
111, 10mpbid 234 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((oc‘𝐾)‘𝑝) ∈ 𝐻)
1211adantr 483 . . 3 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → ((oc‘𝐾)‘𝑝) ∈ 𝐻)
13 hlop 36502 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
142, 13syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP)
152hllatd 36504 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ Lat)
16 simpll3 1210 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑌𝐵)
173, 7opoccl 36334 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑝𝐵) → ((oc‘𝐾)‘𝑝) ∈ 𝐵)
1814, 6, 17syl2anc 586 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((oc‘𝐾)‘𝑝) ∈ 𝐵)
19 lhprelat3.m . . . . . . . . . 10 = (meet‘𝐾)
203, 19latmcl 17665 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ((oc‘𝐾)‘𝑝) ∈ 𝐵) → (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵)
2115, 16, 18, 20syl3anc 1367 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵)
22 lhprelat3.c . . . . . . . . 9 𝐶 = ( ⋖ ‘𝐾)
233, 7, 22cvrcon3b 36417 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵𝑌𝐵) → ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝)))))
2414, 21, 16, 23syl3anc 1367 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝)))))
25 hlol 36501 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
262, 25syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OL)
27 eqid 2824 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
283, 27, 19, 7oldmm3N 36359 . . . . . . . . 9 ((𝐾 ∈ OL ∧ 𝑌𝐵𝑝𝐵) → ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) = (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝))
2926, 16, 6, 28syl3anc 1367 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) = (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝))
3029breq2d 5081 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ↔ ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝)))
3124, 30bitr2d 282 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ↔ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌))
32 simpll2 1209 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋𝐵)
33 lhprelat3.l . . . . . . . . 9 = (le‘𝐾)
343, 33, 7oplecon3b 36340 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵) → (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ↔ ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ((oc‘𝐾)‘𝑋)))
3514, 32, 21, 34syl3anc 1367 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ↔ ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ((oc‘𝐾)‘𝑋)))
3629breq1d 5079 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ((oc‘𝐾)‘𝑋) ↔ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)))
3735, 36bitr2d 282 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋) ↔ 𝑋 (𝑌 ((oc‘𝐾)‘𝑝))))
3831, 37anbi12d 632 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)) ↔ ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌𝑋 (𝑌 ((oc‘𝐾)‘𝑝)))))
3938biimpa 479 . . . 4 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌𝑋 (𝑌 ((oc‘𝐾)‘𝑝))))
4039ancomd 464 . . 3 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ∧ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌))
41 oveq2 7167 . . . . . 6 (𝑤 = ((oc‘𝐾)‘𝑝) → (𝑌 𝑤) = (𝑌 ((oc‘𝐾)‘𝑝)))
4241breq2d 5081 . . . . 5 (𝑤 = ((oc‘𝐾)‘𝑝) → (𝑋 (𝑌 𝑤) ↔ 𝑋 (𝑌 ((oc‘𝐾)‘𝑝))))
4341breq1d 5079 . . . . 5 (𝑤 = ((oc‘𝐾)‘𝑝) → ((𝑌 𝑤)𝐶𝑌 ↔ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌))
4442, 43anbi12d 632 . . . 4 (𝑤 = ((oc‘𝐾)‘𝑝) → ((𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌) ↔ (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ∧ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌)))
4544rspcev 3626 . . 3 ((((oc‘𝐾)‘𝑝) ∈ 𝐻 ∧ (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ∧ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌)) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
4612, 40, 45syl2anc 586 . 2 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
47 simpl1 1187 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝐾 ∈ HL)
4847, 13syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝐾 ∈ OP)
49 simpl3 1189 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑌𝐵)
503, 7opoccl 36334 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
5148, 49, 50syl2anc 586 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
52 simpl2 1188 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝐵)
533, 7opoccl 36334 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
5448, 52, 53syl2anc 586 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
55 simpr 487 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌)
56 lhprelat3.s . . . . . 6 < = (lt‘𝐾)
573, 56, 7opltcon3b 36344 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋)))
5848, 52, 49, 57syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (𝑋 < 𝑌 ↔ ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋)))
5955, 58mpbid 234 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋))
603, 33, 56, 27, 22, 4hlrelat3 36552 . . 3 (((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) ∧ ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋)) → ∃𝑝 ∈ (Atoms‘𝐾)(((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)))
6147, 51, 54, 59, 60syl31anc 1369 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝 ∈ (Atoms‘𝐾)(((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)))
6246, 61r19.29a 3292 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wrex 3142   class class class wbr 5069  cfv 6358  (class class class)co 7159  Basecbs 16486  lecple 16575  occoc 16576  ltcplt 17554  joincjn 17557  meetcmee 17558  Latclat 17658  OPcops 36312  OLcol 36314  ccvr 36402  Atomscatm 36403  HLchlt 36490  LHypclh 37124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-proset 17541  df-poset 17559  df-plt 17571  df-lub 17587  df-glb 17588  df-join 17589  df-meet 17590  df-p0 17652  df-p1 17653  df-lat 17659  df-clat 17721  df-oposet 36316  df-ol 36318  df-oml 36319  df-covers 36406  df-ats 36407  df-atl 36438  df-cvlat 36462  df-hlat 36491  df-lhyp 37128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator