MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidl1el Structured version   Visualization version   GIF version

Theorem lidl1el 19137
Description: An ideal contains 1 iff it is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.)
Hypotheses
Ref Expression
lidlcl.u 𝑈 = (LIdeal‘𝑅)
lidlcl.b 𝐵 = (Base‘𝑅)
lidl1el.o 1 = (1r𝑅)
Assertion
Ref Expression
lidl1el ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ( 1𝐼𝐼 = 𝐵))

Proof of Theorem lidl1el
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 lidlcl.b . . . . . 6 𝐵 = (Base‘𝑅)
2 lidlcl.u . . . . . 6 𝑈 = (LIdeal‘𝑅)
31, 2lidlss 19129 . . . . 5 (𝐼𝑈𝐼𝐵)
43ad2antlr 762 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ 1𝐼) → 𝐼𝐵)
5 eqid 2621 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
6 lidl1el.o . . . . . . . . 9 1 = (1r𝑅)
71, 5, 6ringridm 18493 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑎(.r𝑅) 1 ) = 𝑎)
87ad2ant2rl 784 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ ( 1𝐼𝑎𝐵)) → (𝑎(.r𝑅) 1 ) = 𝑎)
92, 1, 5lidlmcl 19136 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑎𝐵1𝐼)) → (𝑎(.r𝑅) 1 ) ∈ 𝐼)
109ancom2s 843 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ ( 1𝐼𝑎𝐵)) → (𝑎(.r𝑅) 1 ) ∈ 𝐼)
118, 10eqeltrrd 2699 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ ( 1𝐼𝑎𝐵)) → 𝑎𝐼)
1211expr 642 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ 1𝐼) → (𝑎𝐵𝑎𝐼))
1312ssrdv 3589 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ 1𝐼) → 𝐵𝐼)
144, 13eqssd 3600 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ 1𝐼) → 𝐼 = 𝐵)
1514ex 450 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ( 1𝐼𝐼 = 𝐵))
161, 6ringidcl 18489 . . . 4 (𝑅 ∈ Ring → 1𝐵)
1716adantr 481 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 1𝐵)
18 eleq2 2687 . . 3 (𝐼 = 𝐵 → ( 1𝐼1𝐵))
1917, 18syl5ibrcom 237 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝐼 = 𝐵1𝐼))
2015, 19impbid 202 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ( 1𝐼𝐼 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wss 3555  cfv 5847  (class class class)co 6604  Basecbs 15781  .rcmulr 15863  1rcur 18422  Ringcrg 18468  LIdealclidl 19089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-ip 15880  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-mgp 18411  df-ur 18423  df-ring 18470  df-subrg 18699  df-lmod 18786  df-lss 18852  df-sra 19091  df-rgmod 19092  df-lidl 19093
This theorem is referenced by:  rsp1  19143  drngnidl  19148  uzlidlring  41217
  Copyright terms: Public domain W3C validator