Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lidldomn1 Structured version   Visualization version   GIF version

Theorem lidldomn1 41816
Description: If a (left) ideal (which is not the zero ideal) of a domain has a multiplicative identity element, the identity element is the identity of the domain. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
lidldomn1.l 𝐿 = (LIdeal‘𝑅)
lidldomn1.t · = (.r𝑅)
lidldomn1.1 1 = (1r𝑅)
lidldomn1.0 0 = (0g𝑅)
Assertion
Ref Expression
lidldomn1 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 ))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑈   𝑥, ·
Allowed substitution hints:   𝑅(𝑥)   1 (𝑥)   𝐿(𝑥)   0 (𝑥)

Proof of Theorem lidldomn1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 domnring 19021 . . . 4 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
213ad2ant1 1074 . . 3 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑅 ∈ Ring)
3 simp2l 1079 . . 3 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑈𝐿)
4 simp2r 1080 . . 3 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑈 ≠ { 0 })
5 lidldomn1.l . . . 4 𝐿 = (LIdeal‘𝑅)
6 lidldomn1.0 . . . 4 0 = (0g𝑅)
75, 6lidlnz 18953 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿𝑈 ≠ { 0 }) → ∃𝑦𝑈 𝑦0 )
82, 3, 4, 7syl3anc 1317 . 2 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → ∃𝑦𝑈 𝑦0 )
9 oveq2 6434 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐼 · 𝑥) = (𝐼 · 𝑦))
10 id 22 . . . . . . . . . . 11 (𝑥 = 𝑦𝑥 = 𝑦)
119, 10eqeq12d 2529 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐼 · 𝑥) = 𝑥 ↔ (𝐼 · 𝑦) = 𝑦))
12 oveq1 6433 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 · 𝐼) = (𝑦 · 𝐼))
1312, 10eqeq12d 2529 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥 · 𝐼) = 𝑥 ↔ (𝑦 · 𝐼) = 𝑦))
1411, 13anbi12d 742 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) ↔ ((𝐼 · 𝑦) = 𝑦 ∧ (𝑦 · 𝐼) = 𝑦)))
1514rspcva 3184 . . . . . . . 8 ((𝑦𝑈 ∧ ∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) → ((𝐼 · 𝑦) = 𝑦 ∧ (𝑦 · 𝐼) = 𝑦))
162adantr 479 . . . . . . . . . . . . . 14 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑅 ∈ Ring)
17 eqid 2514 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝑅) = (Base‘𝑅)
1817, 5lidlss 18935 . . . . . . . . . . . . . . . . . . . 20 (𝑈𝐿𝑈 ⊆ (Base‘𝑅))
1918adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝑈𝐿𝑈 ≠ { 0 }) → 𝑈 ⊆ (Base‘𝑅))
20193ad2ant2 1075 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑈 ⊆ (Base‘𝑅))
2120sseld 3471 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (𝑦𝑈𝑦 ∈ (Base‘𝑅)))
2221com12 32 . . . . . . . . . . . . . . . 16 (𝑦𝑈 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑦 ∈ (Base‘𝑅)))
2322adantr 479 . . . . . . . . . . . . . . 15 ((𝑦𝑈𝑦0 ) → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑦 ∈ (Base‘𝑅)))
2423impcom 444 . . . . . . . . . . . . . 14 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑦 ∈ (Base‘𝑅))
25 lidldomn1.t . . . . . . . . . . . . . . 15 · = (.r𝑅)
26 lidldomn1.1 . . . . . . . . . . . . . . 15 1 = (1r𝑅)
2717, 25, 26ringlidm 18301 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → ( 1 · 𝑦) = 𝑦)
2816, 24, 27syl2anc 690 . . . . . . . . . . . . 13 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ( 1 · 𝑦) = 𝑦)
29 eqeq2 2525 . . . . . . . . . . . . . . . 16 (𝑦 = ( 1 · 𝑦) → ((𝐼 · 𝑦) = 𝑦 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
3029eqcoms 2522 . . . . . . . . . . . . . . 15 (( 1 · 𝑦) = 𝑦 → ((𝐼 · 𝑦) = 𝑦 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
3130adantl 480 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) ∧ ( 1 · 𝑦) = 𝑦) → ((𝐼 · 𝑦) = 𝑦 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
32 ringgrp 18282 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
331, 32syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ Domn → 𝑅 ∈ Grp)
34333ad2ant1 1074 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑅 ∈ Grp)
3534adantr 479 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑅 ∈ Grp)
3619sseld 3471 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈𝐿𝑈 ≠ { 0 }) → (𝐼𝑈𝐼 ∈ (Base‘𝑅)))
3736a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Domn → ((𝑈𝐿𝑈 ≠ { 0 }) → (𝐼𝑈𝐼 ∈ (Base‘𝑅))))
38373imp 1248 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 ∈ (Base‘𝑅))
3938adantr 479 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝐼 ∈ (Base‘𝑅))
4017, 25ringcl 18291 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐼 · 𝑦) ∈ (Base‘𝑅))
4116, 39, 24, 40syl3anc 1317 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝐼 · 𝑦) ∈ (Base‘𝑅))
4217, 26ringidcl 18298 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
431, 42syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Domn → 1 ∈ (Base‘𝑅))
44433ad2ant1 1074 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 1 ∈ (Base‘𝑅))
4544adantr 479 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 1 ∈ (Base‘𝑅))
4617, 25ringcl 18291 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 1 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ( 1 · 𝑦) ∈ (Base‘𝑅))
4716, 45, 24, 46syl3anc 1317 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ( 1 · 𝑦) ∈ (Base‘𝑅))
48 eqid 2514 . . . . . . . . . . . . . . . . . 18 (-g𝑅) = (-g𝑅)
4917, 6, 48grpsubeq0 17216 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Grp ∧ (𝐼 · 𝑦) ∈ (Base‘𝑅) ∧ ( 1 · 𝑦) ∈ (Base‘𝑅)) → (((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
5035, 41, 47, 49syl3anc 1317 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
5117, 25, 48, 16, 39, 45, 24rngsubdir 18330 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼(-g𝑅) 1 ) · 𝑦) = ((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)))
5251eqeq1d 2516 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0 ↔ ((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0 ))
53 simpl1 1056 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑅 ∈ Domn)
5434, 38, 443jca 1234 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)))
5554adantr 479 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)))
5617, 48grpsubcl 17210 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)) → (𝐼(-g𝑅) 1 ) ∈ (Base‘𝑅))
5755, 56syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝐼(-g𝑅) 1 ) ∈ (Base‘𝑅))
5817, 25, 6domneq0 19022 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Domn ∧ (𝐼(-g𝑅) 1 ) ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0 ↔ ((𝐼(-g𝑅) 1 ) = 0𝑦 = 0 )))
5953, 57, 24, 58syl3anc 1317 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0 ↔ ((𝐼(-g𝑅) 1 ) = 0𝑦 = 0 )))
6017, 6, 48grpsubeq0 17216 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)) → ((𝐼(-g𝑅) 1 ) = 0𝐼 = 1 ))
6155, 60syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼(-g𝑅) 1 ) = 0𝐼 = 1 ))
6261biimpd 217 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼(-g𝑅) 1 ) = 0𝐼 = 1 ))
63 eqneqall 2697 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 0 → (𝑦0𝐼 = 1 ))
6463com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑦0 → (𝑦 = 0𝐼 = 1 ))
6564adantl 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑈𝑦0 ) → (𝑦 = 0𝐼 = 1 ))
6665adantl 480 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝑦 = 0𝐼 = 1 ))
6762, 66jaod 393 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) = 0𝑦 = 0 ) → 𝐼 = 1 ))
6859, 67sylbid 228 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0𝐼 = 1 ))
6952, 68sylbird 248 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0𝐼 = 1 ))
7050, 69sylbird 248 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼 · 𝑦) = ( 1 · 𝑦) → 𝐼 = 1 ))
7170adantr 479 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) ∧ ( 1 · 𝑦) = 𝑦) → ((𝐼 · 𝑦) = ( 1 · 𝑦) → 𝐼 = 1 ))
7231, 71sylbid 228 . . . . . . . . . . . . 13 ((((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) ∧ ( 1 · 𝑦) = 𝑦) → ((𝐼 · 𝑦) = 𝑦𝐼 = 1 ))
7328, 72mpdan 698 . . . . . . . . . . . 12 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼 · 𝑦) = 𝑦𝐼 = 1 ))
7473ex 448 . . . . . . . . . . 11 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → ((𝑦𝑈𝑦0 ) → ((𝐼 · 𝑦) = 𝑦𝐼 = 1 )))
7574com13 85 . . . . . . . . . 10 ((𝐼 · 𝑦) = 𝑦 → ((𝑦𝑈𝑦0 ) → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 )))
7675expd 450 . . . . . . . . 9 ((𝐼 · 𝑦) = 𝑦 → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
7776adantr 479 . . . . . . . 8 (((𝐼 · 𝑦) = 𝑦 ∧ (𝑦 · 𝐼) = 𝑦) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
7815, 77syl 17 . . . . . . 7 ((𝑦𝑈 ∧ ∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
7978ex 448 . . . . . 6 (𝑦𝑈 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 )))))
8079pm2.43b 52 . . . . 5 (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
8180com14 93 . . . 4 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (𝑦𝑈 → (𝑦0 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 ))))
8281imp 443 . . 3 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ 𝑦𝑈) → (𝑦0 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 )))
8382rexlimdva 2917 . 2 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (∃𝑦𝑈 𝑦0 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 )))
848, 83mpd 15 1 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1938  wne 2684  wral 2800  wrex 2801  wss 3444  {csn 4028  cfv 5689  (class class class)co 6426  Basecbs 15579  .rcmulr 15653  0gc0g 15807  Grpcgrp 17137  -gcsg 17139  1rcur 18231  Ringcrg 18277  LIdealclidl 18895  Domncdomn 19005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-cnex 9747  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-mulcom 9755  ax-addass 9756  ax-mulass 9757  ax-distr 9758  ax-i2m1 9759  ax-1ne0 9760  ax-1rid 9761  ax-rnegex 9762  ax-rrecex 9763  ax-cnre 9764  ax-pre-lttri 9765  ax-pre-lttrn 9766  ax-pre-ltadd 9767  ax-pre-mulgt0 9768
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6388  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-om 6834  df-1st 6934  df-2nd 6935  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-er 7505  df-en 7718  df-dom 7719  df-sdom 7720  df-pnf 9831  df-mnf 9832  df-xr 9833  df-ltxr 9834  df-le 9835  df-sub 10019  df-neg 10020  df-nn 10776  df-2 10834  df-3 10835  df-4 10836  df-5 10837  df-6 10838  df-7 10839  df-8 10840  df-ndx 15582  df-slot 15583  df-base 15584  df-sets 15585  df-ress 15586  df-plusg 15665  df-mulr 15666  df-sca 15668  df-vsca 15669  df-ip 15670  df-0g 15809  df-mgm 16957  df-sgrp 16999  df-mnd 17010  df-grp 17140  df-minusg 17141  df-sbg 17142  df-subg 17306  df-mgp 18220  df-ur 18232  df-ring 18279  df-subrg 18508  df-lmod 18595  df-lss 18658  df-sra 18897  df-rgmod 18898  df-lidl 18899  df-nzr 18983  df-domn 19009
This theorem is referenced by:  uzlidlring  41824
  Copyright terms: Public domain W3C validator