Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lidldomn1 Structured version   Visualization version   GIF version

Theorem lidldomn1 41686
Description: If a (left) ideal (which is not the zero ideal) of a domain has a multiplicative identity element, the identity element is the identity of the domain. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
lidldomn1.l 𝐿 = (LIdeal‘𝑅)
lidldomn1.t · = (.r𝑅)
lidldomn1.1 1 = (1r𝑅)
lidldomn1.0 0 = (0g𝑅)
Assertion
Ref Expression
lidldomn1 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 ))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑈   𝑥, ·
Allowed substitution hints:   𝑅(𝑥)   1 (𝑥)   𝐿(𝑥)   0 (𝑥)

Proof of Theorem lidldomn1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 domnring 19277 . . . 4 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
213ad2ant1 1080 . . 3 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑅 ∈ Ring)
3 simp2l 1085 . . 3 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑈𝐿)
4 simp2r 1086 . . 3 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑈 ≠ { 0 })
5 lidldomn1.l . . . 4 𝐿 = (LIdeal‘𝑅)
6 lidldomn1.0 . . . 4 0 = (0g𝑅)
75, 6lidlnz 19209 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿𝑈 ≠ { 0 }) → ∃𝑦𝑈 𝑦0 )
82, 3, 4, 7syl3anc 1324 . 2 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → ∃𝑦𝑈 𝑦0 )
9 oveq2 6643 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐼 · 𝑥) = (𝐼 · 𝑦))
10 id 22 . . . . . . . . . . 11 (𝑥 = 𝑦𝑥 = 𝑦)
119, 10eqeq12d 2635 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐼 · 𝑥) = 𝑥 ↔ (𝐼 · 𝑦) = 𝑦))
12 oveq1 6642 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 · 𝐼) = (𝑦 · 𝐼))
1312, 10eqeq12d 2635 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥 · 𝐼) = 𝑥 ↔ (𝑦 · 𝐼) = 𝑦))
1411, 13anbi12d 746 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) ↔ ((𝐼 · 𝑦) = 𝑦 ∧ (𝑦 · 𝐼) = 𝑦)))
1514rspcva 3302 . . . . . . . 8 ((𝑦𝑈 ∧ ∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) → ((𝐼 · 𝑦) = 𝑦 ∧ (𝑦 · 𝐼) = 𝑦))
162adantr 481 . . . . . . . . . . . . . 14 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑅 ∈ Ring)
17 eqid 2620 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝑅) = (Base‘𝑅)
1817, 5lidlss 19191 . . . . . . . . . . . . . . . . . . . 20 (𝑈𝐿𝑈 ⊆ (Base‘𝑅))
1918adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑈𝐿𝑈 ≠ { 0 }) → 𝑈 ⊆ (Base‘𝑅))
20193ad2ant2 1081 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑈 ⊆ (Base‘𝑅))
2120sseld 3594 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (𝑦𝑈𝑦 ∈ (Base‘𝑅)))
2221com12 32 . . . . . . . . . . . . . . . 16 (𝑦𝑈 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑦 ∈ (Base‘𝑅)))
2322adantr 481 . . . . . . . . . . . . . . 15 ((𝑦𝑈𝑦0 ) → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑦 ∈ (Base‘𝑅)))
2423impcom 446 . . . . . . . . . . . . . 14 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑦 ∈ (Base‘𝑅))
25 lidldomn1.t . . . . . . . . . . . . . . 15 · = (.r𝑅)
26 lidldomn1.1 . . . . . . . . . . . . . . 15 1 = (1r𝑅)
2717, 25, 26ringlidm 18552 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → ( 1 · 𝑦) = 𝑦)
2816, 24, 27syl2anc 692 . . . . . . . . . . . . 13 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ( 1 · 𝑦) = 𝑦)
29 eqeq2 2631 . . . . . . . . . . . . . . . 16 (𝑦 = ( 1 · 𝑦) → ((𝐼 · 𝑦) = 𝑦 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
3029eqcoms 2628 . . . . . . . . . . . . . . 15 (( 1 · 𝑦) = 𝑦 → ((𝐼 · 𝑦) = 𝑦 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
3130adantl 482 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) ∧ ( 1 · 𝑦) = 𝑦) → ((𝐼 · 𝑦) = 𝑦 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
32 ringgrp 18533 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
331, 32syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ Domn → 𝑅 ∈ Grp)
34333ad2ant1 1080 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑅 ∈ Grp)
3534adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑅 ∈ Grp)
3619sseld 3594 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈𝐿𝑈 ≠ { 0 }) → (𝐼𝑈𝐼 ∈ (Base‘𝑅)))
3736a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Domn → ((𝑈𝐿𝑈 ≠ { 0 }) → (𝐼𝑈𝐼 ∈ (Base‘𝑅))))
38373imp 1254 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 ∈ (Base‘𝑅))
3938adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝐼 ∈ (Base‘𝑅))
4017, 25ringcl 18542 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐼 · 𝑦) ∈ (Base‘𝑅))
4116, 39, 24, 40syl3anc 1324 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝐼 · 𝑦) ∈ (Base‘𝑅))
4217, 26ringidcl 18549 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
431, 42syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Domn → 1 ∈ (Base‘𝑅))
44433ad2ant1 1080 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 1 ∈ (Base‘𝑅))
4544adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 1 ∈ (Base‘𝑅))
4617, 25ringcl 18542 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 1 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ( 1 · 𝑦) ∈ (Base‘𝑅))
4716, 45, 24, 46syl3anc 1324 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ( 1 · 𝑦) ∈ (Base‘𝑅))
48 eqid 2620 . . . . . . . . . . . . . . . . . 18 (-g𝑅) = (-g𝑅)
4917, 6, 48grpsubeq0 17482 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Grp ∧ (𝐼 · 𝑦) ∈ (Base‘𝑅) ∧ ( 1 · 𝑦) ∈ (Base‘𝑅)) → (((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
5035, 41, 47, 49syl3anc 1324 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
5117, 25, 48, 16, 39, 45, 24rngsubdir 18581 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼(-g𝑅) 1 ) · 𝑦) = ((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)))
5251eqeq1d 2622 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0 ↔ ((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0 ))
53 simpl1 1062 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑅 ∈ Domn)
5434, 38, 443jca 1240 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)))
5554adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)))
5617, 48grpsubcl 17476 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)) → (𝐼(-g𝑅) 1 ) ∈ (Base‘𝑅))
5755, 56syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝐼(-g𝑅) 1 ) ∈ (Base‘𝑅))
5817, 25, 6domneq0 19278 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Domn ∧ (𝐼(-g𝑅) 1 ) ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0 ↔ ((𝐼(-g𝑅) 1 ) = 0𝑦 = 0 )))
5953, 57, 24, 58syl3anc 1324 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0 ↔ ((𝐼(-g𝑅) 1 ) = 0𝑦 = 0 )))
6017, 6, 48grpsubeq0 17482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)) → ((𝐼(-g𝑅) 1 ) = 0𝐼 = 1 ))
6155, 60syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼(-g𝑅) 1 ) = 0𝐼 = 1 ))
6261biimpd 219 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼(-g𝑅) 1 ) = 0𝐼 = 1 ))
63 eqneqall 2802 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 0 → (𝑦0𝐼 = 1 ))
6463com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑦0 → (𝑦 = 0𝐼 = 1 ))
6564adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑈𝑦0 ) → (𝑦 = 0𝐼 = 1 ))
6665adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝑦 = 0𝐼 = 1 ))
6762, 66jaod 395 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) = 0𝑦 = 0 ) → 𝐼 = 1 ))
6859, 67sylbid 230 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0𝐼 = 1 ))
6952, 68sylbird 250 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0𝐼 = 1 ))
7050, 69sylbird 250 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼 · 𝑦) = ( 1 · 𝑦) → 𝐼 = 1 ))
7170adantr 481 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) ∧ ( 1 · 𝑦) = 𝑦) → ((𝐼 · 𝑦) = ( 1 · 𝑦) → 𝐼 = 1 ))
7231, 71sylbid 230 . . . . . . . . . . . . 13 ((((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) ∧ ( 1 · 𝑦) = 𝑦) → ((𝐼 · 𝑦) = 𝑦𝐼 = 1 ))
7328, 72mpdan 701 . . . . . . . . . . . 12 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼 · 𝑦) = 𝑦𝐼 = 1 ))
7473ex 450 . . . . . . . . . . 11 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → ((𝑦𝑈𝑦0 ) → ((𝐼 · 𝑦) = 𝑦𝐼 = 1 )))
7574com13 88 . . . . . . . . . 10 ((𝐼 · 𝑦) = 𝑦 → ((𝑦𝑈𝑦0 ) → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 )))
7675expd 452 . . . . . . . . 9 ((𝐼 · 𝑦) = 𝑦 → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
7776adantr 481 . . . . . . . 8 (((𝐼 · 𝑦) = 𝑦 ∧ (𝑦 · 𝐼) = 𝑦) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
7815, 77syl 17 . . . . . . 7 ((𝑦𝑈 ∧ ∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
7978ex 450 . . . . . 6 (𝑦𝑈 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 )))))
8079pm2.43b 55 . . . . 5 (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
8180com14 96 . . . 4 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (𝑦𝑈 → (𝑦0 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 ))))
8281imp 445 . . 3 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ 𝑦𝑈) → (𝑦0 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 )))
8382rexlimdva 3027 . 2 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (∃𝑦𝑈 𝑦0 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 )))
848, 83mpd 15 1 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  wral 2909  wrex 2910  wss 3567  {csn 4168  cfv 5876  (class class class)co 6635  Basecbs 15838  .rcmulr 15923  0gc0g 16081  Grpcgrp 17403  -gcsg 17405  1rcur 18482  Ringcrg 18528  LIdealclidl 19151  Domncdomn 19261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-sca 15938  df-vsca 15939  df-ip 15940  df-0g 16083  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-grp 17406  df-minusg 17407  df-sbg 17408  df-subg 17572  df-mgp 18471  df-ur 18483  df-ring 18530  df-subrg 18759  df-lmod 18846  df-lss 18914  df-sra 19153  df-rgmod 19154  df-lidl 19155  df-nzr 19239  df-domn 19265
This theorem is referenced by:  uzlidlring  41694
  Copyright terms: Public domain W3C validator