Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lidlmmgm Structured version   Visualization version   GIF version

Theorem lidlmmgm 44195
Description: The multiplicative group of a (left) ideal of a ring is a magma. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
lidlabl.l 𝐿 = (LIdeal‘𝑅)
lidlabl.i 𝐼 = (𝑅s 𝑈)
Assertion
Ref Expression
lidlmmgm ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (mulGrp‘𝐼) ∈ Mgm)

Proof of Theorem lidlmmgm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lidlabl.l . . . . . . . 8 𝐿 = (LIdeal‘𝑅)
2 lidlabl.i . . . . . . . 8 𝐼 = (𝑅s 𝑈)
31, 2lidlbas 44193 . . . . . . 7 (𝑈𝐿 → (Base‘𝐼) = 𝑈)
4 eleq1a 2908 . . . . . . 7 (𝑈𝐿 → ((Base‘𝐼) = 𝑈 → (Base‘𝐼) ∈ 𝐿))
53, 4mpd 15 . . . . . 6 (𝑈𝐿 → (Base‘𝐼) ∈ 𝐿)
65anim2i 618 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (𝑅 ∈ Ring ∧ (Base‘𝐼) ∈ 𝐿))
76adantr 483 . . . 4 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑅 ∈ Ring ∧ (Base‘𝐼) ∈ 𝐿))
81, 2lidlssbas 44192 . . . . . . . . 9 (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
98adantl 484 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (Base‘𝐼) ⊆ (Base‘𝑅))
109sseld 3965 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
1110com12 32 . . . . . 6 (𝑎 ∈ (Base‘𝐼) → ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝑎 ∈ (Base‘𝑅)))
1211adantr 483 . . . . 5 ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼)) → ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝑎 ∈ (Base‘𝑅)))
1312impcom 410 . . . 4 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → 𝑎 ∈ (Base‘𝑅))
14 simprr 771 . . . 4 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → 𝑏 ∈ (Base‘𝐼))
15 eqid 2821 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
16 eqid 2821 . . . . 5 (.r𝑅) = (.r𝑅)
171, 15, 16lidlmcl 19989 . . . 4 (((𝑅 ∈ Ring ∧ (Base‘𝐼) ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼))
187, 13, 14, 17syl12anc 834 . . 3 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼))
1918ralrimivva 3191 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼))
20 fvex 6682 . . . 4 (mulGrp‘𝐼) ∈ V
21 eqid 2821 . . . . . 6 (mulGrp‘𝐼) = (mulGrp‘𝐼)
22 eqid 2821 . . . . . 6 (Base‘𝐼) = (Base‘𝐼)
2321, 22mgpbas 19244 . . . . 5 (Base‘𝐼) = (Base‘(mulGrp‘𝐼))
24 eqid 2821 . . . . . 6 (.r𝐼) = (.r𝐼)
2521, 24mgpplusg 19242 . . . . 5 (.r𝐼) = (+g‘(mulGrp‘𝐼))
2623, 25ismgm 17852 . . . 4 ((mulGrp‘𝐼) ∈ V → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼)))
2720, 26mp1i 13 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼)))
282, 16ressmulr 16624 . . . . . . . 8 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
2928eqcomd 2827 . . . . . . 7 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
3029adantl 484 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (.r𝐼) = (.r𝑅))
3130oveqdr 7183 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r𝐼)𝑏) = (𝑎(.r𝑅)𝑏))
3231eleq1d 2897 . . . 4 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → ((𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼)))
33322ralbidva 3198 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼)))
3427, 33bitrd 281 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼)))
3519, 34mpbird 259 1 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (mulGrp‘𝐼) ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  wss 3935  cfv 6354  (class class class)co 7155  Basecbs 16482  s cress 16483  .rcmulr 16565  Mgmcmgm 17849  mulGrpcmgp 19238  Ringcrg 19296  LIdealclidl 19941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-ip 16582  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-minusg 18106  df-sbg 18107  df-subg 18275  df-mgp 19239  df-ur 19251  df-ring 19298  df-subrg 19532  df-lmod 19635  df-lss 19703  df-sra 19943  df-rgmod 19944  df-lidl 19945
This theorem is referenced by:  lidlmsgrp  44196
  Copyright terms: Public domain W3C validator