Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lidlmmgm Structured version   Visualization version   GIF version

Theorem lidlmmgm 41210
Description: The multiplicative group of a (left) ideal of a ring is a magma. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
lidlabl.l 𝐿 = (LIdeal‘𝑅)
lidlabl.i 𝐼 = (𝑅s 𝑈)
Assertion
Ref Expression
lidlmmgm ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (mulGrp‘𝐼) ∈ Mgm)

Proof of Theorem lidlmmgm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lidlabl.l . . . . . . . 8 𝐿 = (LIdeal‘𝑅)
2 lidlabl.i . . . . . . . 8 𝐼 = (𝑅s 𝑈)
31, 2lidlbas 41208 . . . . . . 7 (𝑈𝐿 → (Base‘𝐼) = 𝑈)
4 eleq1a 2693 . . . . . . 7 (𝑈𝐿 → ((Base‘𝐼) = 𝑈 → (Base‘𝐼) ∈ 𝐿))
53, 4mpd 15 . . . . . 6 (𝑈𝐿 → (Base‘𝐼) ∈ 𝐿)
65anim2i 592 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (𝑅 ∈ Ring ∧ (Base‘𝐼) ∈ 𝐿))
76adantr 481 . . . 4 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑅 ∈ Ring ∧ (Base‘𝐼) ∈ 𝐿))
81, 2lidlssbas 41207 . . . . . . . . 9 (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
98adantl 482 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (Base‘𝐼) ⊆ (Base‘𝑅))
109sseld 3582 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
1110com12 32 . . . . . 6 (𝑎 ∈ (Base‘𝐼) → ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝑎 ∈ (Base‘𝑅)))
1211adantr 481 . . . . 5 ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼)) → ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝑎 ∈ (Base‘𝑅)))
1312impcom 446 . . . 4 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → 𝑎 ∈ (Base‘𝑅))
14 simprr 795 . . . 4 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → 𝑏 ∈ (Base‘𝐼))
15 eqid 2621 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
16 eqid 2621 . . . . 5 (.r𝑅) = (.r𝑅)
171, 15, 16lidlmcl 19136 . . . 4 (((𝑅 ∈ Ring ∧ (Base‘𝐼) ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼))
187, 13, 14, 17syl12anc 1321 . . 3 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼))
1918ralrimivva 2965 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼))
20 fvex 6158 . . . 4 (mulGrp‘𝐼) ∈ V
21 eqid 2621 . . . . . 6 (mulGrp‘𝐼) = (mulGrp‘𝐼)
22 eqid 2621 . . . . . 6 (Base‘𝐼) = (Base‘𝐼)
2321, 22mgpbas 18416 . . . . 5 (Base‘𝐼) = (Base‘(mulGrp‘𝐼))
24 eqid 2621 . . . . . 6 (.r𝐼) = (.r𝐼)
2521, 24mgpplusg 18414 . . . . 5 (.r𝐼) = (+g‘(mulGrp‘𝐼))
2623, 25ismgm 17164 . . . 4 ((mulGrp‘𝐼) ∈ V → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼)))
2720, 26mp1i 13 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼)))
282, 16ressmulr 15927 . . . . . . . 8 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
2928eqcomd 2627 . . . . . . 7 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
3029adantl 482 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (.r𝐼) = (.r𝑅))
3130oveqdr 6628 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r𝐼)𝑏) = (𝑎(.r𝑅)𝑏))
3231eleq1d 2683 . . . 4 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → ((𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼)))
33322ralbidva 2982 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼)))
3427, 33bitrd 268 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼)))
3519, 34mpbird 247 1 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (mulGrp‘𝐼) ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  wss 3555  cfv 5847  (class class class)co 6604  Basecbs 15781  s cress 15782  .rcmulr 15863  Mgmcmgm 17161  mulGrpcmgp 18410  Ringcrg 18468  LIdealclidl 19089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-ip 15880  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-mgp 18411  df-ur 18423  df-ring 18470  df-subrg 18699  df-lmod 18786  df-lss 18852  df-sra 19091  df-rgmod 19092  df-lidl 19093
This theorem is referenced by:  lidlmsgrp  41211
  Copyright terms: Public domain W3C validator