MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidlnz Structured version   Visualization version   GIF version

Theorem lidlnz 20003
Description: A nonzero ideal contains a nonzero element. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lidlnz.u 𝑈 = (LIdeal‘𝑅)
lidlnz.z 0 = (0g𝑅)
Assertion
Ref Expression
lidlnz ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃𝑥𝐼 𝑥0 )
Distinct variable groups:   𝑥,𝐼   𝑥, 0
Allowed substitution hints:   𝑅(𝑥)   𝑈(𝑥)

Proof of Theorem lidlnz
StepHypRef Expression
1 lidlnz.u . . . . . . 7 𝑈 = (LIdeal‘𝑅)
2 lidlnz.z . . . . . . 7 0 = (0g𝑅)
31, 2lidl0cl 19987 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 0𝐼)
43snssd 4744 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → { 0 } ⊆ 𝐼)
543adant3 1128 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → { 0 } ⊆ 𝐼)
6 simp3 1134 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 })
76necomd 3073 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → { 0 } ≠ 𝐼)
8 df-pss 3956 . . . 4 ({ 0 } ⊊ 𝐼 ↔ ({ 0 } ⊆ 𝐼 ∧ { 0 } ≠ 𝐼))
95, 7, 8sylanbrc 585 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → { 0 } ⊊ 𝐼)
10 pssnel 4422 . . 3 ({ 0 } ⊊ 𝐼 → ∃𝑥(𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 }))
119, 10syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃𝑥(𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 }))
12 velsn 4585 . . . . . 6 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
1312necon3bbii 3065 . . . . 5 𝑥 ∈ { 0 } ↔ 𝑥0 )
1413anbi2i 624 . . . 4 ((𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 }) ↔ (𝑥𝐼𝑥0 ))
1514exbii 1848 . . 3 (∃𝑥(𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 }) ↔ ∃𝑥(𝑥𝐼𝑥0 ))
16 df-rex 3146 . . 3 (∃𝑥𝐼 𝑥0 ↔ ∃𝑥(𝑥𝐼𝑥0 ))
1715, 16bitr4i 280 . 2 (∃𝑥(𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 }) ↔ ∃𝑥𝐼 𝑥0 )
1811, 17sylib 220 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃𝑥𝐼 𝑥0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3018  wrex 3141  wss 3938  wpss 3939  {csn 4569  cfv 6357  0gc0g 16715  Ringcrg 19299  LIdealclidl 19944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-mgp 19242  df-ur 19254  df-ring 19301  df-subrg 19535  df-lmod 19638  df-lss 19706  df-sra 19946  df-rgmod 19947  df-lidl 19948
This theorem is referenced by:  drngnidl  20004  zringlpirlem1  20633  lidldomn1  44199
  Copyright terms: Public domain W3C validator