MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcdif Structured version   Visualization version   GIF version

Theorem limcdif 23559
Description: It suffices to consider functions which are not defined at 𝐵 to define the limit of a function. In particular, the value of the original function 𝐹 at 𝐵 does not affect the limit of 𝐹. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
limccl.f (𝜑𝐹:𝐴⟶ℂ)
Assertion
Ref Expression
limcdif (𝜑 → (𝐹 lim 𝐵) = ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵))

Proof of Theorem limcdif
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl.f . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
2 fdm 6013 . . . . . . . 8 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
31, 2syl 17 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
43adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → dom 𝐹 = 𝐴)
5 limcrcl 23557 . . . . . . . 8 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
65adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
76simp2d 1072 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → dom 𝐹 ⊆ ℂ)
84, 7eqsstr3d 3624 . . . . 5 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → 𝐴 ⊆ ℂ)
96simp3d 1073 . . . . 5 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → 𝐵 ∈ ℂ)
108, 9jca 554 . . . 4 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
1110ex 450 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)))
12 undif1 4020 . . . . . . 7 ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = (𝐴 ∪ {𝐵})
13 difss 3720 . . . . . . . . . . . 12 (𝐴 ∖ {𝐵}) ⊆ 𝐴
14 fssres 6032 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℂ ∧ (𝐴 ∖ {𝐵}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ)
151, 13, 14sylancl 693 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ)
16 fdm 6013 . . . . . . . . . . 11 ((𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ → dom (𝐹 ↾ (𝐴 ∖ {𝐵})) = (𝐴 ∖ {𝐵}))
1715, 16syl 17 . . . . . . . . . 10 (𝜑 → dom (𝐹 ↾ (𝐴 ∖ {𝐵})) = (𝐴 ∖ {𝐵}))
1817adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → dom (𝐹 ↾ (𝐴 ∖ {𝐵})) = (𝐴 ∖ {𝐵}))
19 limcrcl 23557 . . . . . . . . . . 11 (𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵) → ((𝐹 ↾ (𝐴 ∖ {𝐵})):dom (𝐹 ↾ (𝐴 ∖ {𝐵}))⟶ℂ ∧ dom (𝐹 ↾ (𝐴 ∖ {𝐵})) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
2019adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → ((𝐹 ↾ (𝐴 ∖ {𝐵})):dom (𝐹 ↾ (𝐴 ∖ {𝐵}))⟶ℂ ∧ dom (𝐹 ↾ (𝐴 ∖ {𝐵})) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
2120simp2d 1072 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → dom (𝐹 ↾ (𝐴 ∖ {𝐵})) ⊆ ℂ)
2218, 21eqsstr3d 3624 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
2320simp3d 1073 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → 𝐵 ∈ ℂ)
2423snssd 4314 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → {𝐵} ⊆ ℂ)
2522, 24unssd 3772 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ ℂ)
2612, 25syl5eqssr 3634 . . . . . 6 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → (𝐴 ∪ {𝐵}) ⊆ ℂ)
2726unssad 3773 . . . . 5 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → 𝐴 ⊆ ℂ)
2827, 23jca 554 . . . 4 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
2928ex 450 . . 3 (𝜑 → (𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)))
30 eqid 2621 . . . . . 6 ((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵}))
31 eqid 2621 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
32 eqid 2621 . . . . . 6 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
331adantr 481 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐹:𝐴⟶ℂ)
34 simprl 793 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐴 ⊆ ℂ)
35 simprr 795 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐵 ∈ ℂ)
3630, 31, 32, 33, 34, 35ellimc 23556 . . . . 5 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) CnP (TopOpen‘ℂfld))‘𝐵)))
3712eqcomi 2630 . . . . . . 7 (𝐴 ∪ {𝐵}) = ((𝐴 ∖ {𝐵}) ∪ {𝐵})
3837oveq2i 6621 . . . . . 6 ((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
39 eqid 2621 . . . . . . . 8 if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))
4037, 39mpteq12i 4707 . . . . . . 7 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) = (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
41 elun 3736 . . . . . . . . 9 (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 ∈ {𝐵}))
42 velsn 4169 . . . . . . . . . . 11 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
4342orbi2i 541 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 ∈ {𝐵}) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵))
44 pm5.61 748 . . . . . . . . . . . 12 (((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ ¬ 𝑧 = 𝐵))
45 fvres 6169 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴 ∖ {𝐵}) → ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧) = (𝐹𝑧))
4645adantr 481 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ ¬ 𝑧 = 𝐵) → ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧) = (𝐹𝑧))
4744, 46sylbi 207 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) → ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧) = (𝐹𝑧))
4847ifeq2da 4094 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
4943, 48sylbi 207 . . . . . . . . 9 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 ∈ {𝐵}) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
5041, 49sylbi 207 . . . . . . . 8 (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
5150mpteq2ia 4705 . . . . . . 7 (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧))) = (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
5240, 51eqtr4i 2646 . . . . . 6 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) = (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)))
5315adantr 481 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ)
5434ssdifssd 3731 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
5538, 31, 52, 53, 54, 35ellimc 23556 . . . . 5 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) CnP (TopOpen‘ℂfld))‘𝐵)))
5636, 55bitr4d 271 . . . 4 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)))
5756ex 450 . . 3 (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵))))
5811, 29, 57pm5.21ndd 369 . 2 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)))
5958eqrdv 2619 1 (𝜑 → (𝐹 lim 𝐵) = ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  cdif 3556  cun 3557  wss 3559  ifcif 4063  {csn 4153  cmpt 4678  dom cdm 5079  cres 5081  wf 5848  cfv 5852  (class class class)co 6610  cc 9885  t crest 16009  TopOpenctopn 16010  fldccnfld 19674   CnP ccnp 20948   lim climc 23545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fi 8268  df-sup 8299  df-inf 8300  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-fz 12276  df-seq 12749  df-exp 12808  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-plusg 15882  df-mulr 15883  df-starv 15884  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-rest 16011  df-topn 16012  df-topgen 16032  df-psmet 19666  df-xmet 19667  df-met 19668  df-bl 19669  df-mopn 19670  df-cnfld 19675  df-top 20627  df-topon 20644  df-topsp 20657  df-bases 20670  df-cnp 20951  df-xms 22044  df-ms 22045  df-limc 23549
This theorem is referenced by:  dvcnp2  23602  dvmulbr  23621  dvrec  23637  fourierdlem62  39713
  Copyright terms: Public domain W3C validator