![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limcdm0 | Structured version Visualization version GIF version |
Description: If a function has empty domain, every complex number is a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
limcdm0.f | ⊢ (𝜑 → 𝐹:∅⟶ℂ) |
limcdm0.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
limcdm0 | ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limccl 23838 | . . . . 5 ⊢ (𝐹 limℂ 𝐵) ⊆ ℂ | |
2 | 1 | sseli 3740 | . . . 4 ⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → 𝑥 ∈ ℂ) |
3 | 2 | adantl 473 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 limℂ 𝐵)) → 𝑥 ∈ ℂ) |
4 | simpr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
5 | 1rp 12029 | . . . . . . 7 ⊢ 1 ∈ ℝ+ | |
6 | ral0 4220 | . . . . . . 7 ⊢ ∀𝑧 ∈ ∅ ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 1) → (abs‘((𝐹‘𝑧) − 𝑥)) < 𝑦) | |
7 | breq2 4808 | . . . . . . . . . . 11 ⊢ (𝑤 = 1 → ((abs‘(𝑧 − 𝐵)) < 𝑤 ↔ (abs‘(𝑧 − 𝐵)) < 1)) | |
8 | 7 | anbi2d 742 | . . . . . . . . . 10 ⊢ (𝑤 = 1 → ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑤) ↔ (𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 1))) |
9 | 8 | imbi1d 330 | . . . . . . . . 9 ⊢ (𝑤 = 1 → (((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑤) → (abs‘((𝐹‘𝑧) − 𝑥)) < 𝑦) ↔ ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 1) → (abs‘((𝐹‘𝑧) − 𝑥)) < 𝑦))) |
10 | 9 | ralbidv 3124 | . . . . . . . 8 ⊢ (𝑤 = 1 → (∀𝑧 ∈ ∅ ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑤) → (abs‘((𝐹‘𝑧) − 𝑥)) < 𝑦) ↔ ∀𝑧 ∈ ∅ ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 1) → (abs‘((𝐹‘𝑧) − 𝑥)) < 𝑦))) |
11 | 10 | rspcev 3449 | . . . . . . 7 ⊢ ((1 ∈ ℝ+ ∧ ∀𝑧 ∈ ∅ ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 1) → (abs‘((𝐹‘𝑧) − 𝑥)) < 𝑦)) → ∃𝑤 ∈ ℝ+ ∀𝑧 ∈ ∅ ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑤) → (abs‘((𝐹‘𝑧) − 𝑥)) < 𝑦)) |
12 | 5, 6, 11 | mp2an 710 | . . . . . 6 ⊢ ∃𝑤 ∈ ℝ+ ∀𝑧 ∈ ∅ ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑤) → (abs‘((𝐹‘𝑧) − 𝑥)) < 𝑦) |
13 | 12 | rgenw 3062 | . . . . 5 ⊢ ∀𝑦 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑧 ∈ ∅ ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑤) → (abs‘((𝐹‘𝑧) − 𝑥)) < 𝑦) |
14 | 13 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ∀𝑦 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑧 ∈ ∅ ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑤) → (abs‘((𝐹‘𝑧) − 𝑥)) < 𝑦)) |
15 | limcdm0.f | . . . . . 6 ⊢ (𝜑 → 𝐹:∅⟶ℂ) | |
16 | 15 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐹:∅⟶ℂ) |
17 | 0ss 4115 | . . . . . 6 ⊢ ∅ ⊆ ℂ | |
18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ∅ ⊆ ℂ) |
19 | limcdm0.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
20 | 19 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ) |
21 | 16, 18, 20 | ellimc3 23842 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑧 ∈ ∅ ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑤) → (abs‘((𝐹‘𝑧) − 𝑥)) < 𝑦)))) |
22 | 4, 14, 21 | mpbir2and 995 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ (𝐹 limℂ 𝐵)) |
23 | 3, 22 | impbida 913 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ 𝑥 ∈ ℂ)) |
24 | 23 | eqrdv 2758 | 1 ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 ∃wrex 3051 ⊆ wss 3715 ∅c0 4058 class class class wbr 4804 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ℂcc 10126 1c1 10129 < clt 10266 − cmin 10458 ℝ+crp 12025 abscabs 14173 limℂ climc 23825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-map 8025 df-pm 8026 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fi 8482 df-sup 8513 df-inf 8514 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-q 11982 df-rp 12026 df-xneg 12139 df-xadd 12140 df-xmul 12141 df-fz 12520 df-seq 12996 df-exp 13055 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-plusg 16156 df-mulr 16157 df-starv 16158 df-tset 16162 df-ple 16163 df-ds 16166 df-unif 16167 df-rest 16285 df-topn 16286 df-topgen 16306 df-psmet 19940 df-xmet 19941 df-met 19942 df-bl 19943 df-mopn 19944 df-cnfld 19949 df-top 20901 df-topon 20918 df-topsp 20939 df-bases 20952 df-cnp 21234 df-xms 22326 df-ms 22327 df-limc 23829 |
This theorem is referenced by: ioodvbdlimc1 40651 ioodvbdlimc2 40653 |
Copyright terms: Public domain | W3C validator |