MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcflf Structured version   Visualization version   GIF version

Theorem limcflf 24473
Description: The limit operator can be expressed as a filter limit, from the filter of neighborhoods of 𝐵 restricted to 𝐴 ∖ {𝐵}, to the topology of the complex numbers. (If 𝐵 is not a limit point of 𝐴, then it is still formally a filter limit, but the neighborhood filter is not a proper filter in this case.) (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcflf.f (𝜑𝐹:𝐴⟶ℂ)
limcflf.a (𝜑𝐴 ⊆ ℂ)
limcflf.b (𝜑𝐵 ∈ ((limPt‘𝐾)‘𝐴))
limcflf.k 𝐾 = (TopOpen‘ℂfld)
limcflf.c 𝐶 = (𝐴 ∖ {𝐵})
limcflf.l 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶)
Assertion
Ref Expression
limcflf (𝜑 → (𝐹 lim 𝐵) = ((𝐾 fLimf 𝐿)‘(𝐹𝐶)))

Proof of Theorem limcflf
Dummy variables 𝑡 𝑠 𝑢 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3497 . . . . . . . . . . 11 𝑡 ∈ V
21inex1 5213 . . . . . . . . . 10 (𝑡𝐶) ∈ V
32rgenw 3150 . . . . . . . . 9 𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝑡𝐶) ∈ V
4 eqid 2821 . . . . . . . . . 10 (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)) = (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))
5 imaeq2 5919 . . . . . . . . . . . 12 (𝑠 = (𝑡𝐶) → ((𝐹𝐶) “ 𝑠) = ((𝐹𝐶) “ (𝑡𝐶)))
6 inss2 4205 . . . . . . . . . . . . 13 (𝑡𝐶) ⊆ 𝐶
7 resima2 5882 . . . . . . . . . . . . 13 ((𝑡𝐶) ⊆ 𝐶 → ((𝐹𝐶) “ (𝑡𝐶)) = (𝐹 “ (𝑡𝐶)))
86, 7ax-mp 5 . . . . . . . . . . . 12 ((𝐹𝐶) “ (𝑡𝐶)) = (𝐹 “ (𝑡𝐶))
95, 8syl6eq 2872 . . . . . . . . . . 11 (𝑠 = (𝑡𝐶) → ((𝐹𝐶) “ 𝑠) = (𝐹 “ (𝑡𝐶)))
109sseq1d 3997 . . . . . . . . . 10 (𝑠 = (𝑡𝐶) → (((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
114, 10rexrnmptw 6855 . . . . . . . . 9 (∀𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝑡𝐶) ∈ V → (∃𝑠 ∈ ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
123, 11mp1i 13 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑠 ∈ ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
13 limcflf.l . . . . . . . . . 10 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶)
14 fvex 6677 . . . . . . . . . . 11 ((nei‘𝐾)‘{𝐵}) ∈ V
15 limcflf.c . . . . . . . . . . . . . . 15 𝐶 = (𝐴 ∖ {𝐵})
16 difss 4107 . . . . . . . . . . . . . . 15 (𝐴 ∖ {𝐵}) ⊆ 𝐴
1715, 16eqsstri 4000 . . . . . . . . . . . . . 14 𝐶𝐴
18 limcflf.a . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℂ)
1917, 18sstrid 3977 . . . . . . . . . . . . 13 (𝜑𝐶 ⊆ ℂ)
20 cnex 10612 . . . . . . . . . . . . . 14 ℂ ∈ V
2120ssex 5217 . . . . . . . . . . . . 13 (𝐶 ⊆ ℂ → 𝐶 ∈ V)
2219, 21syl 17 . . . . . . . . . . . 12 (𝜑𝐶 ∈ V)
2322ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → 𝐶 ∈ V)
24 restval 16694 . . . . . . . . . . 11 ((((nei‘𝐾)‘{𝐵}) ∈ V ∧ 𝐶 ∈ V) → (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) = ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)))
2514, 23, 24sylancr 589 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) = ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)))
2613, 25syl5eq 2868 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → 𝐿 = ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)))
2726rexeqdv 3416 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ ∃𝑠 ∈ ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))((𝐹𝐶) “ 𝑠) ⊆ 𝑢))
28 limcflf.k . . . . . . . . . . . . . 14 𝐾 = (TopOpen‘ℂfld)
2928cnfldtop 23386 . . . . . . . . . . . . 13 𝐾 ∈ Top
30 opnneip 21721 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑤𝐾𝐵𝑤) → 𝑤 ∈ ((nei‘𝐾)‘{𝐵}))
3129, 30mp3an1 1444 . . . . . . . . . . . 12 ((𝑤𝐾𝐵𝑤) → 𝑤 ∈ ((nei‘𝐾)‘{𝐵}))
32 id 22 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑤𝑡 = 𝑤)
3315a1i 11 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑤𝐶 = (𝐴 ∖ {𝐵}))
3432, 33ineq12d 4189 . . . . . . . . . . . . . . 15 (𝑡 = 𝑤 → (𝑡𝐶) = (𝑤 ∩ (𝐴 ∖ {𝐵})))
3534imaeq2d 5923 . . . . . . . . . . . . . 14 (𝑡 = 𝑤 → (𝐹 “ (𝑡𝐶)) = (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))))
3635sseq1d 3997 . . . . . . . . . . . . 13 (𝑡 = 𝑤 → ((𝐹 “ (𝑡𝐶)) ⊆ 𝑢 ↔ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
3736rspcev 3622 . . . . . . . . . . . 12 ((𝑤 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
3831, 37sylan 582 . . . . . . . . . . 11 (((𝑤𝐾𝐵𝑤) ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
3938anasss 469 . . . . . . . . . 10 ((𝑤𝐾 ∧ (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
4039rexlimiva 3281 . . . . . . . . 9 (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
41 simprl 769 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝑡 ∈ ((nei‘𝐾)‘{𝐵}))
4228cnfldtopon 23385 . . . . . . . . . . . . . . 15 𝐾 ∈ (TopOn‘ℂ)
4342toponunii 21518 . . . . . . . . . . . . . 14 ℂ = 𝐾
4443neii1 21708 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑡 ∈ ((nei‘𝐾)‘{𝐵})) → 𝑡 ⊆ ℂ)
4529, 41, 44sylancr 589 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝑡 ⊆ ℂ)
4643ntropn 21651 . . . . . . . . . . . 12 ((𝐾 ∈ Top ∧ 𝑡 ⊆ ℂ) → ((int‘𝐾)‘𝑡) ∈ 𝐾)
4729, 45, 46sylancr 589 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → ((int‘𝐾)‘𝑡) ∈ 𝐾)
4843lpss 21744 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → ((limPt‘𝐾)‘𝐴) ⊆ ℂ)
4929, 18, 48sylancr 589 . . . . . . . . . . . . . . . . 17 (𝜑 → ((limPt‘𝐾)‘𝐴) ⊆ ℂ)
50 limcflf.b . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ((limPt‘𝐾)‘𝐴))
5149, 50sseldd 3967 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℂ)
5251snssd 4735 . . . . . . . . . . . . . . 15 (𝜑 → {𝐵} ⊆ ℂ)
5352ad3antrrr 728 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → {𝐵} ⊆ ℂ)
5443neiint 21706 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ {𝐵} ⊆ ℂ ∧ 𝑡 ⊆ ℂ) → (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
5529, 53, 45, 54mp3an2i 1462 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
5641, 55mpbid 234 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → {𝐵} ⊆ ((int‘𝐾)‘𝑡))
5751ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝐵 ∈ ℂ)
58 snssg 4710 . . . . . . . . . . . . 13 (𝐵 ∈ ℂ → (𝐵 ∈ ((int‘𝐾)‘𝑡) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
5957, 58syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐵 ∈ ((int‘𝐾)‘𝑡) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
6056, 59mpbird 259 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝐵 ∈ ((int‘𝐾)‘𝑡))
6143ntrss2 21659 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ 𝑡 ⊆ ℂ) → ((int‘𝐾)‘𝑡) ⊆ 𝑡)
6229, 45, 61sylancr 589 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → ((int‘𝐾)‘𝑡) ⊆ 𝑡)
63 ssrin 4209 . . . . . . . . . . . . 13 (((int‘𝐾)‘𝑡) ⊆ 𝑡 → (((int‘𝐾)‘𝑡) ∩ 𝐶) ⊆ (𝑡𝐶))
64 imass2 5959 . . . . . . . . . . . . 13 ((((int‘𝐾)‘𝑡) ∩ 𝐶) ⊆ (𝑡𝐶) → (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ (𝐹 “ (𝑡𝐶)))
6562, 63, 643syl 18 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ (𝐹 “ (𝑡𝐶)))
66 simprr 771 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
6765, 66sstrd 3976 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢)
68 eleq2 2901 . . . . . . . . . . . . 13 (𝑤 = ((int‘𝐾)‘𝑡) → (𝐵𝑤𝐵 ∈ ((int‘𝐾)‘𝑡)))
6915ineq2i 4185 . . . . . . . . . . . . . . . 16 (𝑤𝐶) = (𝑤 ∩ (𝐴 ∖ {𝐵}))
70 ineq1 4180 . . . . . . . . . . . . . . . 16 (𝑤 = ((int‘𝐾)‘𝑡) → (𝑤𝐶) = (((int‘𝐾)‘𝑡) ∩ 𝐶))
7169, 70syl5eqr 2870 . . . . . . . . . . . . . . 15 (𝑤 = ((int‘𝐾)‘𝑡) → (𝑤 ∩ (𝐴 ∖ {𝐵})) = (((int‘𝐾)‘𝑡) ∩ 𝐶))
7271imaeq2d 5923 . . . . . . . . . . . . . 14 (𝑤 = ((int‘𝐾)‘𝑡) → (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)))
7372sseq1d 3997 . . . . . . . . . . . . 13 (𝑤 = ((int‘𝐾)‘𝑡) → ((𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢))
7468, 73anbi12d 632 . . . . . . . . . . . 12 (𝑤 = ((int‘𝐾)‘𝑡) → ((𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ (𝐵 ∈ ((int‘𝐾)‘𝑡) ∧ (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢)))
7574rspcev 3622 . . . . . . . . . . 11 ((((int‘𝐾)‘𝑡) ∈ 𝐾 ∧ (𝐵 ∈ ((int‘𝐾)‘𝑡) ∧ (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢)) → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
7647, 60, 67, 75syl12anc 834 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
7776rexlimdvaa 3285 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
7840, 77impbid2 228 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
7912, 27, 783bitr4rd 314 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))
8079anassrs 470 . . . . . 6 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑢𝐾) ∧ 𝑥𝑢) → (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))
8180pm5.74da 802 . . . . 5 (((𝜑𝑥 ∈ ℂ) ∧ 𝑢𝐾) → ((𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢)))
8281ralbidva 3196 . . . 4 ((𝜑𝑥 ∈ ℂ) → (∀𝑢𝐾 (𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢)))
8382pm5.32da 581 . . 3 (𝜑 → ((𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))))
84 limcflf.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
8584, 18, 51, 28ellimc2 24469 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
8684, 18, 50, 28, 15, 13limcflflem 24472 . . . 4 (𝜑𝐿 ∈ (Fil‘𝐶))
87 fssres 6538 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐶𝐴) → (𝐹𝐶):𝐶⟶ℂ)
8884, 17, 87sylancl 588 . . . 4 (𝜑 → (𝐹𝐶):𝐶⟶ℂ)
89 isflf 22595 . . . 4 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐿 ∈ (Fil‘𝐶) ∧ (𝐹𝐶):𝐶⟶ℂ) → (𝑥 ∈ ((𝐾 fLimf 𝐿)‘(𝐹𝐶)) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))))
9042, 86, 88, 89mp3an2i 1462 . . 3 (𝜑 → (𝑥 ∈ ((𝐾 fLimf 𝐿)‘(𝐹𝐶)) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))))
9183, 85, 903bitr4d 313 . 2 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐾 fLimf 𝐿)‘(𝐹𝐶))))
9291eqrdv 2819 1 (𝜑 → (𝐹 lim 𝐵) = ((𝐾 fLimf 𝐿)‘(𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  Vcvv 3494  cdif 3932  cin 3934  wss 3935  {csn 4560  cmpt 5138  ran crn 5550  cres 5551  cima 5552  wf 6345  cfv 6349  (class class class)co 7150  cc 10529  t crest 16688  TopOpenctopn 16689  fldccnfld 20539  Topctop 21495  TopOnctopon 21512  intcnt 21619  neicnei 21699  limPtclp 21736  Filcfil 22447   fLimf cflf 22537   lim climc 24454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-fz 12887  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-rest 16690  df-topn 16691  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-cnp 21830  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-limc 24458
This theorem is referenced by:  limcmo  24474
  Copyright terms: Public domain W3C validator