MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcmpt2 Structured version   Visualization version   GIF version

Theorem limcmpt2 23571
Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcmpt2.a (𝜑𝐴 ⊆ ℂ)
limcmpt2.b (𝜑𝐵𝐴)
limcmpt2.f ((𝜑 ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℂ)
limcmpt2.j 𝐽 = (𝐾t 𝐴)
limcmpt2.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
limcmpt2 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) lim 𝐵) ↔ (𝑧𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝜑,𝑧
Allowed substitution hints:   𝐷(𝑧)   𝐽(𝑧)   𝐾(𝑧)

Proof of Theorem limcmpt2
StepHypRef Expression
1 limcmpt2.a . . . 4 (𝜑𝐴 ⊆ ℂ)
21ssdifssd 3731 . . 3 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ)
3 limcmpt2.b . . . 4 (𝜑𝐵𝐴)
41, 3sseldd 3588 . . 3 (𝜑𝐵 ∈ ℂ)
5 eldifsn 4292 . . . 4 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧𝐴𝑧𝐵))
6 limcmpt2.f . . . 4 ((𝜑 ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℂ)
75, 6sylan2b 492 . . 3 ((𝜑𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐷 ∈ ℂ)
8 eqid 2621 . . 3 (𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
9 limcmpt2.k . . 3 𝐾 = (TopOpen‘ℂfld)
102, 4, 7, 8, 9limcmpt 23570 . 2 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) lim 𝐵) ↔ (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ (((𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵)))
11 undif1 4020 . . . . 5 ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = (𝐴 ∪ {𝐵})
123snssd 4314 . . . . . 6 (𝜑 → {𝐵} ⊆ 𝐴)
13 ssequn2 3769 . . . . . 6 ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴)
1412, 13sylib 208 . . . . 5 (𝜑 → (𝐴 ∪ {𝐵}) = 𝐴)
1511, 14syl5eq 2667 . . . 4 (𝜑 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
1615mpteq1d 4703 . . 3 (𝜑 → (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) = (𝑧𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)))
1715oveq2d 6626 . . . . . 6 (𝜑 → (𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝐾t 𝐴))
18 limcmpt2.j . . . . . 6 𝐽 = (𝐾t 𝐴)
1917, 18syl6eqr 2673 . . . . 5 (𝜑 → (𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = 𝐽)
2019oveq1d 6625 . . . 4 (𝜑 → ((𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾) = (𝐽 CnP 𝐾))
2120fveq1d 6155 . . 3 (𝜑 → (((𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵) = ((𝐽 CnP 𝐾)‘𝐵))
2216, 21eleq12d 2692 . 2 (𝜑 → ((𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ (((𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ (𝑧𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
2310, 22bitrd 268 1 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) lim 𝐵) ↔ (𝑧𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  cdif 3556  cun 3557  wss 3559  ifcif 4063  {csn 4153  cmpt 4678  cfv 5852  (class class class)co 6610  cc 9886  t crest 16013  TopOpenctopn 16014  fldccnfld 19678   CnP ccnp 20952   lim climc 23549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fi 8269  df-sup 8300  df-inf 8301  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-fz 12277  df-seq 12750  df-exp 12809  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-plusg 15886  df-mulr 15887  df-starv 15888  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-rest 16015  df-topn 16016  df-topgen 16036  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cnp 20955  df-xms 22048  df-ms 22049  df-limc 23553
This theorem is referenced by:  dvcnp  23605
  Copyright terms: Public domain W3C validator