Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcmptdm Structured version   Visualization version   GIF version

Theorem limcmptdm 39667
Description: The domain of a map-to function with a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcmptdm.f 𝐹 = (𝑥𝐴𝐵)
limcmptdm.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
limcmptdm.c (𝜑𝐶 ∈ (𝐹 lim 𝐷))
Assertion
Ref Expression
limcmptdm (𝜑𝐴 ⊆ ℂ)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)

Proof of Theorem limcmptdm
StepHypRef Expression
1 limcmptdm.f . . 3 𝐹 = (𝑥𝐴𝐵)
2 limcmptdm.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
31, 2dmmptd 6011 . 2 (𝜑 → dom 𝐹 = 𝐴)
4 limcmptdm.c . . . 4 (𝜑𝐶 ∈ (𝐹 lim 𝐷))
5 limcrcl 23619 . . . 4 (𝐶 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
64, 5syl 17 . . 3 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
76simp2d 1072 . 2 (𝜑 → dom 𝐹 ⊆ ℂ)
83, 7eqsstr3d 3632 1 (𝜑𝐴 ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1481  wcel 1988  wss 3567  cmpt 4720  dom cdm 5104  wf 5872  (class class class)co 6635  cc 9919   lim climc 23607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-pm 7845  df-limc 23611
This theorem is referenced by:  neglimc  39679  addlimc  39680  0ellimcdiv  39681  reclimc  39685
  Copyright terms: Public domain W3C validator