MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcrcl Structured version   Visualization version   GIF version

Theorem limcrcl 24399
Description: Reverse closure for the limit operator. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
limcrcl (𝐶 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))

Proof of Theorem limcrcl
Dummy variables 𝑓 𝑗 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-limc 24391 . . 3 lim = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦[(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓𝑧))) ∈ (((𝑗t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)})
21elmpocl 7376 . 2 (𝐶 ∈ (𝐹 lim 𝐵) → (𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐵 ∈ ℂ))
3 cnex 10606 . . . . 5 ℂ ∈ V
43, 3elpm2 8427 . . . 4 (𝐹 ∈ (ℂ ↑pm ℂ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ))
54anbi1i 623 . . 3 ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐵 ∈ ℂ) ↔ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ 𝐵 ∈ ℂ))
6 df-3an 1081 . . 3 ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ↔ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ 𝐵 ∈ ℂ))
75, 6bitr4i 279 . 2 ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐵 ∈ ℂ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
82, 7sylib 219 1 (𝐶 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079  wcel 2105  {cab 2796  [wsbc 3769  cun 3931  wss 3933  ifcif 4463  {csn 4557  cmpt 5137  dom cdm 5548  wf 6344  cfv 6348  (class class class)co 7145  pm cpm 8396  cc 10523  t crest 16682  TopOpenctopn 16683  fldccnfld 20473   CnP ccnp 21761   lim climc 24387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-pm 8398  df-limc 24391
This theorem is referenced by:  limccl  24400  limcdif  24401  limcresi  24410  limcres  24411  limccnp  24416  limccnp2  24417  limcco  24418  limcun  24420  mullimc  41773  limccog  41777  mullimcf  41780  limcperiod  41785  limcmptdm  41792  neglimc  41804  addlimc  41805  0ellimcdiv  41806  reclimc  41810
  Copyright terms: Public domain W3C validator