MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcrcl Structured version   Visualization version   GIF version

Theorem limcrcl 23857
Description: Reverse closure for the limit operator. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
limcrcl (𝐶 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))

Proof of Theorem limcrcl
Dummy variables 𝑓 𝑗 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-limc 23849 . . 3 lim = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦[(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓𝑧))) ∈ (((𝑗t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)})
21elmpt2cl 7042 . 2 (𝐶 ∈ (𝐹 lim 𝐵) → (𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐵 ∈ ℂ))
3 cnex 10229 . . . . 5 ℂ ∈ V
43, 3elpm2 8057 . . . 4 (𝐹 ∈ (ℂ ↑pm ℂ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ))
54anbi1i 733 . . 3 ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐵 ∈ ℂ) ↔ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ 𝐵 ∈ ℂ))
6 df-3an 1074 . . 3 ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ↔ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ 𝐵 ∈ ℂ))
75, 6bitr4i 267 . 2 ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐵 ∈ ℂ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
82, 7sylib 208 1 (𝐶 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072  wcel 2139  {cab 2746  [wsbc 3576  cun 3713  wss 3715  ifcif 4230  {csn 4321  cmpt 4881  dom cdm 5266  wf 6045  cfv 6049  (class class class)co 6814  pm cpm 8026  cc 10146  t crest 16303  TopOpenctopn 16304  fldccnfld 19968   CnP ccnp 21251   lim climc 23845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-pm 8028  df-limc 23849
This theorem is referenced by:  limccl  23858  limcdif  23859  limcresi  23868  limcres  23869  limccnp  23874  limccnp2  23875  limcco  23876  limcun  23878  mullimc  40369  limccog  40373  mullimcf  40376  limcperiod  40381  limcmptdm  40388  neglimc  40400  addlimc  40401  0ellimcdiv  40402  reclimc  40406
  Copyright terms: Public domain W3C validator