Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcrecl Structured version   Visualization version   GIF version

Theorem limcrecl 41903
Description: If 𝐹 is a real-valued function, 𝐵 is a limit point of its domain, and the limit of 𝐹 at 𝐵 exists, then this limit is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcrecl.1 (𝜑𝐹:𝐴⟶ℝ)
limcrecl.2 (𝜑𝐴 ⊆ ℂ)
limcrecl.3 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴))
limcrecl.4 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
Assertion
Ref Expression
limcrecl (𝜑𝐿 ∈ ℝ)

Proof of Theorem limcrecl
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrecl.4 . . 3 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
21adantr 483 . 2 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → 𝐿 ∈ (𝐹 lim 𝐵))
3 limccl 24467 . . . . . . . . . 10 (𝐹 lim 𝐵) ⊆ ℂ
43, 1sseldi 3964 . . . . . . . . 9 (𝜑𝐿 ∈ ℂ)
54adantr 483 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → 𝐿 ∈ ℂ)
6 simpr 487 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ 𝐿 ∈ ℝ)
75, 6eldifd 3946 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → 𝐿 ∈ (ℂ ∖ ℝ))
87dstregt0 41540 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ∃𝑥 ∈ ℝ+𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)))
9 cnxmet 23375 . . . . . . . . . . . . . 14 (abs ∘ − ) ∈ (∞Met‘ℂ)
109a1i 11 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
11 limcrecl.2 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℂ)
1211ad4antr 730 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → 𝐴 ⊆ ℂ)
1312ssdifssd 4118 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
14 limcrecl.3 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴))
15 eqid 2821 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1615cnfldtop 23386 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) ∈ Top
1716a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
18 unicntop 23388 . . . . . . . . . . . . . . . . 17 ℂ = (TopOpen‘ℂfld)
1911, 18sseqtrdi 4016 . . . . . . . . . . . . . . . 16 (𝜑𝐴 (TopOpen‘ℂfld))
20 eqid 2821 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2120lpdifsn 21745 . . . . . . . . . . . . . . . 16 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 (TopOpen‘ℂfld)) → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴) ↔ 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵}))))
2217, 19, 21syl2anc 586 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴) ↔ 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵}))))
2314, 22mpbid 234 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵})))
2423ad4antr 730 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵})))
25 simpr 487 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
2615cnfldtopn 23384 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
2726lpbl 23107 . . . . . . . . . . . . 13 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝐴 ∖ {𝐵}) ⊆ ℂ ∧ 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵}))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝐴 ∖ {𝐵})𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
2810, 13, 24, 25, 27syl31anc 1369 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝐴 ∖ {𝐵})𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
29 eldif 3945 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧𝐴 ∧ ¬ 𝑧 ∈ {𝐵}))
3029anbi1i 625 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) ↔ ((𝑧𝐴 ∧ ¬ 𝑧 ∈ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
31 anass 471 . . . . . . . . . . . . . 14 (((𝑧𝐴 ∧ ¬ 𝑧 ∈ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) ↔ (𝑧𝐴 ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))))
3230, 31bitri 277 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) ↔ (𝑧𝐴 ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))))
3332rexbii2 3245 . . . . . . . . . . . 12 (∃𝑧 ∈ (𝐴 ∖ {𝐵})𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ ∃𝑧𝐴𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
3428, 33sylib 220 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧𝐴𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
35 simprl 769 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ¬ 𝑧 ∈ {𝐵})
36 velsn 4576 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
3736necon3bbii 3063 . . . . . . . . . . . . . . . . 17 𝑧 ∈ {𝐵} ↔ 𝑧𝐵)
3835, 37sylib 220 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑧𝐵)
39 simp-5l 783 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝜑)
40 simplr 767 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑦 ∈ ℝ+)
41 simprr 771 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
42 simp3 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
439a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
4418lpss 21744 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 ⊆ ℂ) → ((limPt‘(TopOpen‘ℂfld))‘𝐴) ⊆ ℂ)
4517, 11, 44syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((limPt‘(TopOpen‘ℂfld))‘𝐴) ⊆ ℂ)
4645, 14sseldd 3967 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵 ∈ ℂ)
47463ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝐵 ∈ ℂ)
48 rpxr 12392 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℝ+𝑦 ∈ ℝ*)
49483ad2ant2 1130 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝑦 ∈ ℝ*)
50 elbl 22992 . . . . . . . . . . . . . . . . . . . . . 22 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝐵(abs ∘ − )𝑧) < 𝑦)))
5143, 47, 49, 50syl3anc 1367 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝐵(abs ∘ − )𝑧) < 𝑦)))
5242, 51mpbid 234 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝑧 ∈ ℂ ∧ (𝐵(abs ∘ − )𝑧) < 𝑦))
5352simpld 497 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝑧 ∈ ℂ)
5453, 47abssubd 14807 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs‘(𝑧𝐵)) = (abs‘(𝐵𝑧)))
55 eqid 2821 . . . . . . . . . . . . . . . . . . . . 21 (abs ∘ − ) = (abs ∘ − )
5655cnmetdval 23373 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐵(abs ∘ − )𝑧) = (abs‘(𝐵𝑧)))
5747, 53, 56syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝐵(abs ∘ − )𝑧) = (abs‘(𝐵𝑧)))
5852simprd 498 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝐵(abs ∘ − )𝑧) < 𝑦)
5957, 58eqbrtrrd 5082 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs‘(𝐵𝑧)) < 𝑦)
6054, 59eqbrtrd 5080 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs‘(𝑧𝐵)) < 𝑦)
6139, 40, 41, 60syl3anc 1367 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (abs‘(𝑧𝐵)) < 𝑦)
6238, 61jca 514 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦))
6362adantlr 713 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦))
6439adantlr 713 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝜑)
65 simplr 767 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑧𝐴)
6664, 65jca 514 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (𝜑𝑧𝐴))
67 simp-5r 784 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑥 ∈ ℝ+)
68 simp-4r 782 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)))
69 rpre 12391 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
7069ad2antlr 725 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝑥 ∈ ℝ)
71 limcrecl.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹:𝐴⟶ℝ)
7271ffvelrnda 6845 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℝ)
7372recnd 10663 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
7473ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (𝐹𝑧) ∈ ℂ)
754ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝐿 ∈ ℂ)
7674, 75subcld 10991 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ((𝐹𝑧) − 𝐿) ∈ ℂ)
7776abscld 14790 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (abs‘((𝐹𝑧) − 𝐿)) ∈ ℝ)
7872adantr 483 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝐴) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (𝐹𝑧) ∈ ℝ)
79 nfv 1911 . . . . . . . . . . . . . . . . . . . . 21 𝑤𝜑
80 nfra1 3219 . . . . . . . . . . . . . . . . . . . . 21 𝑤𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))
8179, 80nfan 1896 . . . . . . . . . . . . . . . . . . . 20 𝑤(𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)))
82 rspa 3206 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)) ∧ 𝑤 ∈ ℝ) → 𝑥 < (abs‘(𝐿𝑤)))
8382adantll 712 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑤 ∈ ℝ) → 𝑥 < (abs‘(𝐿𝑤)))
844adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤 ∈ ℝ) → 𝐿 ∈ ℂ)
85 ax-resscn 10588 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ℝ ⊆ ℂ
8685a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ℝ ⊆ ℂ)
8786sselda 3966 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℂ)
8884, 87abssubd 14807 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ ℝ) → (abs‘(𝐿𝑤)) = (abs‘(𝑤𝐿)))
8988adantlr 713 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑤 ∈ ℝ) → (abs‘(𝐿𝑤)) = (abs‘(𝑤𝐿)))
9083, 89breqtrd 5084 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑤 ∈ ℝ) → 𝑥 < (abs‘(𝑤𝐿)))
9190ex 415 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (𝑤 ∈ ℝ → 𝑥 < (abs‘(𝑤𝐿))))
9281, 91ralrimi 3216 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝑤𝐿)))
9392adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝐴) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝑤𝐿)))
94 fvoveq1 7173 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐹𝑧) → (abs‘(𝑤𝐿)) = (abs‘((𝐹𝑧) − 𝐿)))
9594breq2d 5070 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝐹𝑧) → (𝑥 < (abs‘(𝑤𝐿)) ↔ 𝑥 < (abs‘((𝐹𝑧) − 𝐿))))
9695rspcv 3617 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑧) ∈ ℝ → (∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝑤𝐿)) → 𝑥 < (abs‘((𝐹𝑧) − 𝐿))))
9778, 93, 96sylc 65 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝐴) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝑥 < (abs‘((𝐹𝑧) − 𝐿)))
9897adantlr 713 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝑥 < (abs‘((𝐹𝑧) − 𝐿)))
9970, 77, 98ltnsymd 10783 . . . . . . . . . . . . . . 15 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ¬ (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
10066, 67, 68, 99syl21anc 835 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ¬ (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
10163, 100jcnd 165 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
102101ex 415 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) → ((¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
103102reximdva 3274 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → (∃𝑧𝐴𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → ∃𝑧𝐴 ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
10434, 103mpd 15 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧𝐴 ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
105 rexnal 3238 . . . . . . . . . 10 (∃𝑧𝐴 ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥) ↔ ¬ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
106104, 105sylib 220 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ¬ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
107106nrexdv 3270 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
108107ex 415 . . . . . . 7 (((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)) → ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
109108reximdva 3274 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → (∃𝑥 ∈ ℝ+𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)) → ∃𝑥 ∈ ℝ+ ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
1108, 109mpd 15 . . . . 5 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ∃𝑥 ∈ ℝ+ ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
111 rexnal 3238 . . . . 5 (∃𝑥 ∈ ℝ+ ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥) ↔ ¬ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
112110, 111sylib 220 . . . 4 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
113112intnand 491 . . 3 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
11471, 86fssd 6522 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
115114, 11, 46ellimc3 24471 . . . 4 (𝜑 → (𝐿 ∈ (𝐹 lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))))
116115adantr 483 . . 3 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → (𝐿 ∈ (𝐹 lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))))
117113, 116mtbird 327 . 2 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ 𝐿 ∈ (𝐹 lim 𝐵))
1182, 117condan 816 1 (𝜑𝐿 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  cdif 3932  wss 3935  {csn 4560   cuni 4831   class class class wbr 5058  ccom 5553  wf 6345  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  *cxr 10668   < clt 10669  cmin 10864  +crp 12383  abscabs 14587  TopOpenctopn 16689  ∞Metcxmet 20524  ballcbl 20526  fldccnfld 20539  Topctop 21495  limPtclp 21736   lim climc 24454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-fz 12887  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-rest 16690  df-topn 16691  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-cnp 21830  df-xms 22924  df-ms 22925  df-limc 24458
This theorem is referenced by:  cncfiooiccre  42171  fourierdlem60  42445  fourierdlem61  42446  fourierdlem74  42459  fourierdlem75  42460  fourierdlem85  42470  fourierdlem88  42473  fourierdlem95  42480  fourierdlem103  42488  fourierdlem104  42489
  Copyright terms: Public domain W3C validator