Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcresioolb Structured version   Visualization version   GIF version

Theorem limcresioolb 39266
Description: The right limit doesn't change if the function is restricted to a smaller open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcresioolb.f (𝜑𝐹:𝐴⟶ℂ)
limcresioolb.b (𝜑𝐵 ∈ ℝ)
limcresioolb.c (𝜑𝐶 ∈ ℝ*)
limcresioolb.bltc (𝜑𝐵 < 𝐶)
limcresioolb.bcss (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴)
limcresioolb.d (𝜑𝐷 ∈ ℝ*)
limcresioolb.cled (𝜑𝐶𝐷)
Assertion
Ref Expression
limcresioolb (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐵) = ((𝐹 ↾ (𝐵(,)𝐷)) lim 𝐵))

Proof of Theorem limcresioolb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limcresioolb.d . . . . . 6 (𝜑𝐷 ∈ ℝ*)
2 limcresioolb.cled . . . . . 6 (𝜑𝐶𝐷)
3 iooss2 12150 . . . . . 6 ((𝐷 ∈ ℝ*𝐶𝐷) → (𝐵(,)𝐶) ⊆ (𝐵(,)𝐷))
41, 2, 3syl2anc 692 . . . . 5 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐵(,)𝐷))
54resabs1d 5391 . . . 4 (𝜑 → ((𝐹 ↾ (𝐵(,)𝐷)) ↾ (𝐵(,)𝐶)) = (𝐹 ↾ (𝐵(,)𝐶)))
65eqcomd 2632 . . 3 (𝜑 → (𝐹 ↾ (𝐵(,)𝐶)) = ((𝐹 ↾ (𝐵(,)𝐷)) ↾ (𝐵(,)𝐶)))
76oveq1d 6620 . 2 (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐵) = (((𝐹 ↾ (𝐵(,)𝐷)) ↾ (𝐵(,)𝐶)) lim 𝐵))
8 limcresioolb.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
9 fresin 6032 . . . 4 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (𝐵(,)𝐷)):(𝐴 ∩ (𝐵(,)𝐷))⟶ℂ)
108, 9syl 17 . . 3 (𝜑 → (𝐹 ↾ (𝐵(,)𝐷)):(𝐴 ∩ (𝐵(,)𝐷))⟶ℂ)
11 limcresioolb.bcss . . . 4 (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴)
1211, 4ssind 3820 . . 3 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐴 ∩ (𝐵(,)𝐷)))
13 inss2 3817 . . . . 5 (𝐴 ∩ (𝐵(,)𝐷)) ⊆ (𝐵(,)𝐷)
14 ioosscn 39114 . . . . 5 (𝐵(,)𝐷) ⊆ ℂ
1513, 14sstri 3597 . . . 4 (𝐴 ∩ (𝐵(,)𝐷)) ⊆ ℂ
1615a1i 11 . . 3 (𝜑 → (𝐴 ∩ (𝐵(,)𝐷)) ⊆ ℂ)
17 eqid 2626 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
18 eqid 2626 . . 3 ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
19 limcresioolb.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
2019rexrd 10034 . . . . 5 (𝜑𝐵 ∈ ℝ*)
21 limcresioolb.c . . . . 5 (𝜑𝐶 ∈ ℝ*)
22 limcresioolb.bltc . . . . 5 (𝜑𝐵 < 𝐶)
23 lbico1 12167 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵 < 𝐶) → 𝐵 ∈ (𝐵[,)𝐶))
2420, 21, 22, 23syl3anc 1323 . . . 4 (𝜑𝐵 ∈ (𝐵[,)𝐶))
25 snunioo1 39136 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵 < 𝐶) → ((𝐵(,)𝐶) ∪ {𝐵}) = (𝐵[,)𝐶))
2620, 21, 22, 25syl3anc 1323 . . . . . 6 (𝜑 → ((𝐵(,)𝐶) ∪ {𝐵}) = (𝐵[,)𝐶))
2726fveq2d 6154 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))‘((𝐵(,)𝐶) ∪ {𝐵})) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))‘(𝐵[,)𝐶)))
2817cnfldtop 22492 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
29 ovex 6633 . . . . . . . . . 10 (𝐵(,)𝐷) ∈ V
3029inex2 4765 . . . . . . . . 9 (𝐴 ∩ (𝐵(,)𝐷)) ∈ V
31 snex 4874 . . . . . . . . 9 {𝐵} ∈ V
3230, 31unex 6910 . . . . . . . 8 ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ∈ V
33 resttop 20869 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ∈ V) → ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∈ Top)
3428, 32, 33mp2an 707 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∈ Top
3534a1i 11 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∈ Top)
36 mnfxr 10041 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
3736a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → -∞ ∈ ℝ*)
3821adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝐶 ∈ ℝ*)
39 icossre 12193 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ*) → (𝐵[,)𝐶) ⊆ ℝ)
4019, 21, 39syl2anc 692 . . . . . . . . . . . . 13 (𝜑 → (𝐵[,)𝐶) ⊆ ℝ)
4140sselda 3588 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ ℝ)
4241mnfltd 11902 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → -∞ < 𝑥)
4320adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝐵 ∈ ℝ*)
44 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ (𝐵[,)𝐶))
45 icoltub 39130 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 < 𝐶)
4643, 38, 44, 45syl3anc 1323 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 < 𝐶)
4737, 38, 41, 42, 46eliood 39118 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ (-∞(,)𝐶))
48 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 𝐵) → 𝑥 = 𝐵)
49 snidg 4182 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → 𝐵 ∈ {𝐵})
50 elun2 3764 . . . . . . . . . . . . . . . 16 (𝐵 ∈ {𝐵} → 𝐵 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
5119, 49, 503syl 18 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
5251adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 𝐵) → 𝐵 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
5348, 52eqeltrd 2704 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝐵) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
5453adantlr 750 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
55 simpll 789 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝜑)
5643adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
5738adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝐶 ∈ ℝ*)
5841adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
5919ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ)
60 icogelb 12164 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,)𝐶)) → 𝐵𝑥)
6143, 38, 44, 60syl3anc 1323 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝐵𝑥)
6261adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝐵𝑥)
63 neqne 2804 . . . . . . . . . . . . . . . 16 𝑥 = 𝐵𝑥𝐵)
6463adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝑥𝐵)
6559, 58, 62, 64leneltd 10136 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 < 𝑥)
6646adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐶)
6756, 57, 58, 65, 66eliood 39118 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵(,)𝐶))
6812sselda 3588 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐴 ∩ (𝐵(,)𝐷)))
69 elun1 3763 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 ∩ (𝐵(,)𝐷)) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
7068, 69syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
7155, 67, 70syl2anc 692 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
7254, 71pm2.61dan 831 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
7347, 72elind 3781 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
7424adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝐵) → 𝐵 ∈ (𝐵[,)𝐶))
7548, 74eqeltrd 2704 . . . . . . . . . . . 12 ((𝜑𝑥 = 𝐵) → 𝑥 ∈ (𝐵[,)𝐶))
7675adantlr 750 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵[,)𝐶))
77 ioossico 12201 . . . . . . . . . . . 12 (𝐵(,)𝐶) ⊆ (𝐵[,)𝐶)
7820ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
7921ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝐶 ∈ ℝ*)
80 elinel1 3782 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) → 𝑥 ∈ (-∞(,)𝐶))
8180elioored 39174 . . . . . . . . . . . . . 14 (𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) → 𝑥 ∈ ℝ)
8281ad2antlr 762 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
831ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝐷 ∈ ℝ*)
84 elinel2 3783 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
85 id 22 . . . . . . . . . . . . . . . . . 18 𝑥 = 𝐵 → ¬ 𝑥 = 𝐵)
86 velsn 4169 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
8785, 86sylnibr 319 . . . . . . . . . . . . . . . . 17 𝑥 = 𝐵 → ¬ 𝑥 ∈ {𝐵})
88 elunnel2 38667 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ∧ ¬ 𝑥 ∈ {𝐵}) → 𝑥 ∈ (𝐴 ∩ (𝐵(,)𝐷)))
8984, 87, 88syl2an 494 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴 ∩ (𝐵(,)𝐷)))
9013, 89sseldi 3586 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵(,)𝐷))
9190adantll 749 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵(,)𝐷))
92 ioogtlb 39115 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝐷 ∈ ℝ*𝑥 ∈ (𝐵(,)𝐷)) → 𝐵 < 𝑥)
9378, 83, 91, 92syl3anc 1323 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝐵 < 𝑥)
9436a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) → -∞ ∈ ℝ*)
9521adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) → 𝐶 ∈ ℝ*)
9680adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) → 𝑥 ∈ (-∞(,)𝐶))
97 iooltub 39133 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (-∞(,)𝐶)) → 𝑥 < 𝐶)
9894, 95, 96, 97syl3anc 1323 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) → 𝑥 < 𝐶)
9998adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐶)
10078, 79, 82, 93, 99eliood 39118 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵(,)𝐶))
10177, 100sseldi 3586 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵[,)𝐶))
10276, 101pm2.61dan 831 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) → 𝑥 ∈ (𝐵[,)𝐶))
10373, 102impbida 876 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐵[,)𝐶) ↔ 𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))))
104103eqrdv 2624 . . . . . . . 8 (𝜑 → (𝐵[,)𝐶) = ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
105 retop 22470 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
106105a1i 11 . . . . . . . . 9 (𝜑 → (topGen‘ran (,)) ∈ Top)
10732a1i 11 . . . . . . . . 9 (𝜑 → ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ∈ V)
108 iooretop 22474 . . . . . . . . . 10 (-∞(,)𝐶) ∈ (topGen‘ran (,))
109108a1i 11 . . . . . . . . 9 (𝜑 → (-∞(,)𝐶) ∈ (topGen‘ran (,)))
110 elrestr 16005 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ∈ V ∧ (-∞(,)𝐶) ∈ (topGen‘ran (,))) → ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
111106, 107, 109, 110syl3anc 1323 . . . . . . . 8 (𝜑 → ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
112104, 111eqeltrd 2704 . . . . . . 7 (𝜑 → (𝐵[,)𝐶) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
11317tgioo2 22509 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
114113oveq1i 6615 . . . . . . . 8 ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
11528a1i 11 . . . . . . . . 9 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
116 ioossre 12174 . . . . . . . . . . . 12 (𝐵(,)𝐷) ⊆ ℝ
11713, 116sstri 3597 . . . . . . . . . . 11 (𝐴 ∩ (𝐵(,)𝐷)) ⊆ ℝ
118117a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴 ∩ (𝐵(,)𝐷)) ⊆ ℝ)
11919snssd 4314 . . . . . . . . . 10 (𝜑 → {𝐵} ⊆ ℝ)
120118, 119unssd 3772 . . . . . . . . 9 (𝜑 → ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ⊆ ℝ)
121 reex 9972 . . . . . . . . . 10 ℝ ∈ V
122121a1i 11 . . . . . . . . 9 (𝜑 → ℝ ∈ V)
123 restabs 20874 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
124115, 120, 122, 123syl3anc 1323 . . . . . . . 8 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
125114, 124syl5eq 2672 . . . . . . 7 (𝜑 → ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
126112, 125eleqtrd 2706 . . . . . 6 (𝜑 → (𝐵[,)𝐶) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
127 isopn3i 20791 . . . . . 6 ((((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∈ Top ∧ (𝐵[,)𝐶) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))‘(𝐵[,)𝐶)) = (𝐵[,)𝐶))
12835, 126, 127syl2anc 692 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))‘(𝐵[,)𝐶)) = (𝐵[,)𝐶))
12927, 128eqtr2d 2661 . . . 4 (𝜑 → (𝐵[,)𝐶) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))‘((𝐵(,)𝐶) ∪ {𝐵})))
13024, 129eleqtrd 2706 . . 3 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))‘((𝐵(,)𝐶) ∪ {𝐵})))
13110, 12, 16, 17, 18, 130limcres 23551 . 2 (𝜑 → (((𝐹 ↾ (𝐵(,)𝐷)) ↾ (𝐵(,)𝐶)) lim 𝐵) = ((𝐹 ↾ (𝐵(,)𝐷)) lim 𝐵))
1327, 131eqtrd 2660 1 (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐵) = ((𝐹 ↾ (𝐵(,)𝐷)) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1992  wne 2796  Vcvv 3191  cun 3558  cin 3559  wss 3560  {csn 4153   class class class wbr 4618  ran crn 5080  cres 5081  wf 5846  cfv 5850  (class class class)co 6605  cc 9879  cr 9880  -∞cmnf 10017  *cxr 10018   < clt 10019  cle 10020  (,)cioo 12114  [,)cico 12116  t crest 15997  TopOpenctopn 15998  topGenctg 16014  fldccnfld 19660  Topctop 20612  intcnt 20726   lim climc 23527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-map 7805  df-pm 7806  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fi 8262  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12118  df-ico 12120  df-icc 12121  df-fz 12266  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-plusg 15870  df-mulr 15871  df-starv 15872  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-rest 15999  df-topn 16000  df-topgen 16020  df-psmet 19652  df-xmet 19653  df-met 19654  df-bl 19655  df-mopn 19656  df-cnfld 19661  df-top 20616  df-bases 20617  df-topon 20618  df-topsp 20619  df-ntr 20729  df-cnp 20937  df-xms 22030  df-ms 22031  df-limc 23531
This theorem is referenced by:  fouriersw  39742
  Copyright terms: Public domain W3C validator