Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcresioolb Structured version   Visualization version   GIF version

Theorem limcresioolb 41916
Description: The right limit doesn't change if the function is restricted to a smaller open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcresioolb.f (𝜑𝐹:𝐴⟶ℂ)
limcresioolb.b (𝜑𝐵 ∈ ℝ)
limcresioolb.c (𝜑𝐶 ∈ ℝ*)
limcresioolb.bltc (𝜑𝐵 < 𝐶)
limcresioolb.bcss (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴)
limcresioolb.d (𝜑𝐷 ∈ ℝ*)
limcresioolb.cled (𝜑𝐶𝐷)
Assertion
Ref Expression
limcresioolb (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐵) = ((𝐹 ↾ (𝐵(,)𝐷)) lim 𝐵))

Proof of Theorem limcresioolb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limcresioolb.d . . . . . 6 (𝜑𝐷 ∈ ℝ*)
2 limcresioolb.cled . . . . . 6 (𝜑𝐶𝐷)
3 iooss2 12768 . . . . . 6 ((𝐷 ∈ ℝ*𝐶𝐷) → (𝐵(,)𝐶) ⊆ (𝐵(,)𝐷))
41, 2, 3syl2anc 586 . . . . 5 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐵(,)𝐷))
54resabs1d 5879 . . . 4 (𝜑 → ((𝐹 ↾ (𝐵(,)𝐷)) ↾ (𝐵(,)𝐶)) = (𝐹 ↾ (𝐵(,)𝐶)))
65eqcomd 2827 . . 3 (𝜑 → (𝐹 ↾ (𝐵(,)𝐶)) = ((𝐹 ↾ (𝐵(,)𝐷)) ↾ (𝐵(,)𝐶)))
76oveq1d 7165 . 2 (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐵) = (((𝐹 ↾ (𝐵(,)𝐷)) ↾ (𝐵(,)𝐶)) lim 𝐵))
8 limcresioolb.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
9 fresin 6542 . . . 4 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (𝐵(,)𝐷)):(𝐴 ∩ (𝐵(,)𝐷))⟶ℂ)
108, 9syl 17 . . 3 (𝜑 → (𝐹 ↾ (𝐵(,)𝐷)):(𝐴 ∩ (𝐵(,)𝐷))⟶ℂ)
11 limcresioolb.bcss . . . 4 (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴)
1211, 4ssind 4209 . . 3 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐴 ∩ (𝐵(,)𝐷)))
13 inss2 4206 . . . . 5 (𝐴 ∩ (𝐵(,)𝐷)) ⊆ (𝐵(,)𝐷)
14 ioosscn 41761 . . . . 5 (𝐵(,)𝐷) ⊆ ℂ
1513, 14sstri 3976 . . . 4 (𝐴 ∩ (𝐵(,)𝐷)) ⊆ ℂ
1615a1i 11 . . 3 (𝜑 → (𝐴 ∩ (𝐵(,)𝐷)) ⊆ ℂ)
17 eqid 2821 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
18 eqid 2821 . . 3 ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
19 limcresioolb.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
2019rexrd 10685 . . . . 5 (𝜑𝐵 ∈ ℝ*)
21 limcresioolb.c . . . . 5 (𝜑𝐶 ∈ ℝ*)
22 limcresioolb.bltc . . . . 5 (𝜑𝐵 < 𝐶)
23 lbico1 12785 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵 < 𝐶) → 𝐵 ∈ (𝐵[,)𝐶))
2420, 21, 22, 23syl3anc 1367 . . . 4 (𝜑𝐵 ∈ (𝐵[,)𝐶))
25 snunioo1 41780 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵 < 𝐶) → ((𝐵(,)𝐶) ∪ {𝐵}) = (𝐵[,)𝐶))
2620, 21, 22, 25syl3anc 1367 . . . . . 6 (𝜑 → ((𝐵(,)𝐶) ∪ {𝐵}) = (𝐵[,)𝐶))
2726fveq2d 6669 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))‘((𝐵(,)𝐶) ∪ {𝐵})) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))‘(𝐵[,)𝐶)))
2817cnfldtop 23386 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
29 ovex 7183 . . . . . . . . . 10 (𝐵(,)𝐷) ∈ V
3029inex2 5215 . . . . . . . . 9 (𝐴 ∩ (𝐵(,)𝐷)) ∈ V
31 snex 5324 . . . . . . . . 9 {𝐵} ∈ V
3230, 31unex 7463 . . . . . . . 8 ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ∈ V
33 resttop 21762 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ∈ V) → ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∈ Top)
3428, 32, 33mp2an 690 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∈ Top
3534a1i 11 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∈ Top)
36 mnfxr 10692 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
3736a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → -∞ ∈ ℝ*)
3821adantr 483 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝐶 ∈ ℝ*)
39 icossre 12811 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ*) → (𝐵[,)𝐶) ⊆ ℝ)
4019, 21, 39syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → (𝐵[,)𝐶) ⊆ ℝ)
4140sselda 3967 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ ℝ)
4241mnfltd 12513 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → -∞ < 𝑥)
4320adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝐵 ∈ ℝ*)
44 simpr 487 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ (𝐵[,)𝐶))
45 icoltub 41776 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 < 𝐶)
4643, 38, 44, 45syl3anc 1367 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 < 𝐶)
4737, 38, 41, 42, 46eliood 41765 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ (-∞(,)𝐶))
48 simpr 487 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 𝐵) → 𝑥 = 𝐵)
49 snidg 4593 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → 𝐵 ∈ {𝐵})
50 elun2 4153 . . . . . . . . . . . . . . . 16 (𝐵 ∈ {𝐵} → 𝐵 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
5119, 49, 503syl 18 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
5251adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 𝐵) → 𝐵 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
5348, 52eqeltrd 2913 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝐵) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
5453adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
55 simpll 765 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝜑)
5643adantr 483 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
5738adantr 483 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝐶 ∈ ℝ*)
5841adantr 483 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
5919ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ)
60 icogelb 12782 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,)𝐶)) → 𝐵𝑥)
6143, 38, 44, 60syl3anc 1367 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝐵𝑥)
6261adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝐵𝑥)
63 neqne 3024 . . . . . . . . . . . . . . . 16 𝑥 = 𝐵𝑥𝐵)
6463adantl 484 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝑥𝐵)
6559, 58, 62, 64leneltd 10788 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 < 𝑥)
6646adantr 483 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐶)
6756, 57, 58, 65, 66eliood 41765 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵(,)𝐶))
6812sselda 3967 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐴 ∩ (𝐵(,)𝐷)))
69 elun1 4152 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 ∩ (𝐵(,)𝐷)) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
7068, 69syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
7155, 67, 70syl2anc 586 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐵[,)𝐶)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
7254, 71pm2.61dan 811 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
7347, 72elind 4171 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
7424adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝐵) → 𝐵 ∈ (𝐵[,)𝐶))
7548, 74eqeltrd 2913 . . . . . . . . . . . 12 ((𝜑𝑥 = 𝐵) → 𝑥 ∈ (𝐵[,)𝐶))
7675adantlr 713 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵[,)𝐶))
77 ioossico 12820 . . . . . . . . . . . 12 (𝐵(,)𝐶) ⊆ (𝐵[,)𝐶)
7820ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
7921ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝐶 ∈ ℝ*)
80 elinel1 4172 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) → 𝑥 ∈ (-∞(,)𝐶))
8180elioored 41817 . . . . . . . . . . . . . 14 (𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) → 𝑥 ∈ ℝ)
8281ad2antlr 725 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
831ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝐷 ∈ ℝ*)
84 elinel2 4173 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) → 𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
85 id 22 . . . . . . . . . . . . . . . . . 18 𝑥 = 𝐵 → ¬ 𝑥 = 𝐵)
86 velsn 4577 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
8785, 86sylnibr 331 . . . . . . . . . . . . . . . . 17 𝑥 = 𝐵 → ¬ 𝑥 ∈ {𝐵})
88 elunnel2 41289 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ∧ ¬ 𝑥 ∈ {𝐵}) → 𝑥 ∈ (𝐴 ∩ (𝐵(,)𝐷)))
8984, 87, 88syl2an 597 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴 ∩ (𝐵(,)𝐷)))
9013, 89sseldi 3965 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵(,)𝐷))
9190adantll 712 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵(,)𝐷))
92 ioogtlb 41762 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝐷 ∈ ℝ*𝑥 ∈ (𝐵(,)𝐷)) → 𝐵 < 𝑥)
9378, 83, 91, 92syl3anc 1367 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝐵 < 𝑥)
9436a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) → -∞ ∈ ℝ*)
9521adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) → 𝐶 ∈ ℝ*)
9680adantl 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) → 𝑥 ∈ (-∞(,)𝐶))
97 iooltub 41778 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (-∞(,)𝐶)) → 𝑥 < 𝐶)
9894, 95, 96, 97syl3anc 1367 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) → 𝑥 < 𝐶)
9998adantr 483 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐶)
10078, 79, 82, 93, 99eliood 41765 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵(,)𝐶))
10177, 100sseldi 3965 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵[,)𝐶))
10276, 101pm2.61dan 811 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) → 𝑥 ∈ (𝐵[,)𝐶))
10373, 102impbida 799 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐵[,)𝐶) ↔ 𝑥 ∈ ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))))
104103eqrdv 2819 . . . . . . . 8 (𝜑 → (𝐵[,)𝐶) = ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
105 retop 23364 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
106105a1i 11 . . . . . . . . 9 (𝜑 → (topGen‘ran (,)) ∈ Top)
10732a1i 11 . . . . . . . . 9 (𝜑 → ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ∈ V)
108 iooretop 23368 . . . . . . . . . 10 (-∞(,)𝐶) ∈ (topGen‘ran (,))
109108a1i 11 . . . . . . . . 9 (𝜑 → (-∞(,)𝐶) ∈ (topGen‘ran (,)))
110 elrestr 16696 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ∈ V ∧ (-∞(,)𝐶) ∈ (topGen‘ran (,))) → ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
111106, 107, 109, 110syl3anc 1367 . . . . . . . 8 (𝜑 → ((-∞(,)𝐶) ∩ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
112104, 111eqeltrd 2913 . . . . . . 7 (𝜑 → (𝐵[,)𝐶) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
11317tgioo2 23405 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
114113oveq1i 7160 . . . . . . . 8 ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))
11528a1i 11 . . . . . . . . 9 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
116 ioossre 12792 . . . . . . . . . . . 12 (𝐵(,)𝐷) ⊆ ℝ
11713, 116sstri 3976 . . . . . . . . . . 11 (𝐴 ∩ (𝐵(,)𝐷)) ⊆ ℝ
118117a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴 ∩ (𝐵(,)𝐷)) ⊆ ℝ)
11919snssd 4736 . . . . . . . . . 10 (𝜑 → {𝐵} ⊆ ℝ)
120118, 119unssd 4162 . . . . . . . . 9 (𝜑 → ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ⊆ ℝ)
121 reex 10622 . . . . . . . . . 10 ℝ ∈ V
122121a1i 11 . . . . . . . . 9 (𝜑 → ℝ ∈ V)
123 restabs 21767 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
124115, 120, 122, 123syl3anc 1367 . . . . . . . 8 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
125114, 124syl5eq 2868 . . . . . . 7 (𝜑 → ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
126112, 125eleqtrd 2915 . . . . . 6 (𝜑 → (𝐵[,)𝐶) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))
127 isopn3i 21684 . . . . . 6 ((((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})) ∈ Top ∧ (𝐵[,)𝐶) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵}))) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))‘(𝐵[,)𝐶)) = (𝐵[,)𝐶))
12835, 126, 127syl2anc 586 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))‘(𝐵[,)𝐶)) = (𝐵[,)𝐶))
12927, 128eqtr2d 2857 . . . 4 (𝜑 → (𝐵[,)𝐶) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))‘((𝐵(,)𝐶) ∪ {𝐵})))
13024, 129eleqtrd 2915 . . 3 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐵(,)𝐷)) ∪ {𝐵})))‘((𝐵(,)𝐶) ∪ {𝐵})))
13110, 12, 16, 17, 18, 130limcres 24478 . 2 (𝜑 → (((𝐹 ↾ (𝐵(,)𝐷)) ↾ (𝐵(,)𝐶)) lim 𝐵) = ((𝐹 ↾ (𝐵(,)𝐷)) lim 𝐵))
1327, 131eqtrd 2856 1 (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐵) = ((𝐹 ↾ (𝐵(,)𝐷)) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  Vcvv 3495  cun 3934  cin 3935  wss 3936  {csn 4561   class class class wbr 5059  ran crn 5551  cres 5552  wf 6346  cfv 6350  (class class class)co 7150  cc 10529  cr 10530  -∞cmnf 10667  *cxr 10668   < clt 10669  cle 10670  (,)cioo 12732  [,)cico 12734  t crest 16688  TopOpenctopn 16689  topGenctg 16705  fldccnfld 20539  Topctop 21495  intcnt 21619   lim climc 24454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-rest 16690  df-topn 16691  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-ntr 21622  df-cnp 21830  df-xms 22924  df-ms 22925  df-limc 24458
This theorem is referenced by:  fouriersw  42509
  Copyright terms: Public domain W3C validator