Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcresiooub Structured version   Visualization version   GIF version

Theorem limcresiooub 39306
Description: The left limit doesn't change if the function is restricted to a smaller open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcresiooub.f (𝜑𝐹:𝐴⟶ℂ)
limcresiooub.b (𝜑𝐵 ∈ ℝ*)
limcresiooub.c (𝜑𝐶 ∈ ℝ)
limcresiooub.bltc (𝜑𝐵 < 𝐶)
limcresiooub.bcss (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴)
limcresiooub.d (𝜑𝐷 ∈ ℝ*)
limcresiooub.cled (𝜑𝐷𝐵)
Assertion
Ref Expression
limcresiooub (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐶) = ((𝐹 ↾ (𝐷(,)𝐶)) lim 𝐶))

Proof of Theorem limcresiooub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limcresiooub.d . . . . . 6 (𝜑𝐷 ∈ ℝ*)
2 limcresiooub.cled . . . . . 6 (𝜑𝐷𝐵)
3 iooss1 12160 . . . . . 6 ((𝐷 ∈ ℝ*𝐷𝐵) → (𝐵(,)𝐶) ⊆ (𝐷(,)𝐶))
41, 2, 3syl2anc 692 . . . . 5 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐷(,)𝐶))
54resabs1d 5392 . . . 4 (𝜑 → ((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)) = (𝐹 ↾ (𝐵(,)𝐶)))
65eqcomd 2627 . . 3 (𝜑 → (𝐹 ↾ (𝐵(,)𝐶)) = ((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)))
76oveq1d 6625 . 2 (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐶) = (((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)) lim 𝐶))
8 limcresiooub.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
9 fresin 6035 . . . 4 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (𝐷(,)𝐶)):(𝐴 ∩ (𝐷(,)𝐶))⟶ℂ)
108, 9syl 17 . . 3 (𝜑 → (𝐹 ↾ (𝐷(,)𝐶)):(𝐴 ∩ (𝐷(,)𝐶))⟶ℂ)
11 limcresiooub.bcss . . . 4 (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴)
1211, 4ssind 3820 . . 3 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐴 ∩ (𝐷(,)𝐶)))
13 inss2 3817 . . . . 5 (𝐴 ∩ (𝐷(,)𝐶)) ⊆ (𝐷(,)𝐶)
14 ioosscn 39158 . . . . 5 (𝐷(,)𝐶) ⊆ ℂ
1513, 14sstri 3596 . . . 4 (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℂ
1615a1i 11 . . 3 (𝜑 → (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℂ)
17 eqid 2621 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
18 eqid 2621 . . 3 ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
19 limcresiooub.b . . . . 5 (𝜑𝐵 ∈ ℝ*)
20 limcresiooub.c . . . . . 6 (𝜑𝐶 ∈ ℝ)
2120rexrd 10041 . . . . 5 (𝜑𝐶 ∈ ℝ*)
22 limcresiooub.bltc . . . . 5 (𝜑𝐵 < 𝐶)
23 ubioc1 12177 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵 < 𝐶) → 𝐶 ∈ (𝐵(,]𝐶))
2419, 21, 22, 23syl3anc 1323 . . . 4 (𝜑𝐶 ∈ (𝐵(,]𝐶))
25 snunioo2 39173 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵 < 𝐶) → ((𝐵(,)𝐶) ∪ {𝐶}) = (𝐵(,]𝐶))
2619, 21, 22, 25syl3anc 1323 . . . . . 6 (𝜑 → ((𝐵(,)𝐶) ∪ {𝐶}) = (𝐵(,]𝐶))
2726fveq2d 6157 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘((𝐵(,)𝐶) ∪ {𝐶})) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘(𝐵(,]𝐶)))
2817cnfldtop 22510 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
29 ovex 6638 . . . . . . . . . 10 (𝐷(,)𝐶) ∈ V
3029inex2 4765 . . . . . . . . 9 (𝐴 ∩ (𝐷(,)𝐶)) ∈ V
31 snex 4874 . . . . . . . . 9 {𝐶} ∈ V
3230, 31unex 6916 . . . . . . . 8 ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V
33 resttop 20887 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V) → ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top)
3428, 32, 33mp2an 707 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top
3534a1i 11 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top)
36 pnfxr 10044 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
3736a1i 11 . . . . . . . . . . . . 13 (𝜑 → +∞ ∈ ℝ*)
38 xrleid 11935 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ*𝐵𝐵)
3919, 38syl 17 . . . . . . . . . . . . 13 (𝜑𝐵𝐵)
4020ltpnfd 11907 . . . . . . . . . . . . 13 (𝜑𝐶 < +∞)
41 iocssioo 12213 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐵𝐵𝐶 < +∞)) → (𝐵(,]𝐶) ⊆ (𝐵(,)+∞))
4219, 37, 39, 40, 41syl22anc 1324 . . . . . . . . . . . 12 (𝜑 → (𝐵(,]𝐶) ⊆ (𝐵(,)+∞))
43 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 𝐶) → 𝑥 = 𝐶)
44 snidg 4182 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ ℝ → 𝐶 ∈ {𝐶})
45 elun2 3764 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ {𝐶} → 𝐶 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4620, 44, 453syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4746adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 𝐶) → 𝐶 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4843, 47eqeltrd 2698 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 𝐶) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4948adantlr 750 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ 𝑥 = 𝐶) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
50 simpll 789 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝜑)
5119adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 ∈ ℝ*)
5251adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐵 ∈ ℝ*)
5321adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐶 ∈ ℝ*)
5453adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐶 ∈ ℝ*)
55 iocssre 12203 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐵(,]𝐶) ⊆ ℝ)
5619, 20, 55syl2anc 692 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵(,]𝐶) ⊆ ℝ)
5756sselda 3587 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ℝ)
5857adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ ℝ)
59 simpr 477 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ (𝐵(,]𝐶))
60 iocgtlb 39166 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
6151, 53, 59, 60syl3anc 1323 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
6261adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐵 < 𝑥)
6320ad2antrr 761 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐶 ∈ ℝ)
64 iocleub 39167 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
6551, 53, 59, 64syl3anc 1323 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
6665adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥𝐶)
67 neqne 2798 . . . . . . . . . . . . . . . . . . . 20 𝑥 = 𝐶𝑥𝐶)
6867adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥𝐶)
6968necomd 2845 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐶𝑥)
7058, 63, 66, 69leneltd 10143 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 < 𝐶)
7152, 54, 58, 62, 70eliood 39162 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,)𝐶))
7212sselda 3587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)))
73 elun1 3763 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7472, 73syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7550, 71, 74syl2anc 692 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7649, 75pm2.61dan 831 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7776ralrimiva 2961 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ (𝐵(,]𝐶)𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
78 dfss3 3577 . . . . . . . . . . . . 13 ((𝐵(,]𝐶) ⊆ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ↔ ∀𝑥 ∈ (𝐵(,]𝐶)𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7977, 78sylibr 224 . . . . . . . . . . . 12 (𝜑 → (𝐵(,]𝐶) ⊆ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
8042, 79ssind 3820 . . . . . . . . . . 11 (𝜑 → (𝐵(,]𝐶) ⊆ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
8180sseld 3586 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐵(,]𝐶) → 𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))))
8224adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 𝐶) → 𝐶 ∈ (𝐵(,]𝐶))
8343, 82eqeltrd 2698 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
8483adantlr 750 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
85 ioossioc 39155 . . . . . . . . . . . . 13 (𝐵(,)𝐶) ⊆ (𝐵(,]𝐶)
8619ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐵 ∈ ℝ*)
8721ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐶 ∈ ℝ*)
88 elinel1 3782 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ (𝐵(,)+∞))
8988elioored 39218 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ ℝ)
9089ad2antlr 762 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ ℝ)
9136a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → +∞ ∈ ℝ*)
9288ad2antlr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,)+∞))
93 ioogtlb 39159 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝐵(,)+∞)) → 𝐵 < 𝑥)
9486, 91, 92, 93syl3anc 1323 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐵 < 𝑥)
951ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐷 ∈ ℝ*)
96 elinel2 3783 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
97 id 22 . . . . . . . . . . . . . . . . . . 19 𝑥 = 𝐶 → ¬ 𝑥 = 𝐶)
98 velsn 4169 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝐶} ↔ 𝑥 = 𝐶)
9997, 98sylnibr 319 . . . . . . . . . . . . . . . . . 18 𝑥 = 𝐶 → ¬ 𝑥 ∈ {𝐶})
100 elunnel2 38716 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∧ ¬ 𝑥 ∈ {𝐶}) → 𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)))
10196, 99, 100syl2an 494 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)))
10213, 101sseldi 3585 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐷(,)𝐶))
103102adantll 749 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐷(,)𝐶))
104 iooltub 39177 . . . . . . . . . . . . . . 15 ((𝐷 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐷(,)𝐶)) → 𝑥 < 𝐶)
10595, 87, 103, 104syl3anc 1323 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 < 𝐶)
10686, 87, 90, 94, 105eliood 39162 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,)𝐶))
10785, 106sseldi 3585 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
10884, 107pm2.61dan 831 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) → 𝑥 ∈ (𝐵(,]𝐶))
109108ex 450 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ (𝐵(,]𝐶)))
11081, 109impbid 202 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐵(,]𝐶) ↔ 𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))))
111110eqrdv 2619 . . . . . . . 8 (𝜑 → (𝐵(,]𝐶) = ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
112 retop 22488 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
113112a1i 11 . . . . . . . . 9 (𝜑 → (topGen‘ran (,)) ∈ Top)
11432a1i 11 . . . . . . . . 9 (𝜑 → ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V)
115 iooretop 22492 . . . . . . . . . 10 (𝐵(,)+∞) ∈ (topGen‘ran (,))
116115a1i 11 . . . . . . . . 9 (𝜑 → (𝐵(,)+∞) ∈ (topGen‘ran (,)))
117 elrestr 16021 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V ∧ (𝐵(,)+∞) ∈ (topGen‘ran (,))) → ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
118113, 114, 116, 117syl3anc 1323 . . . . . . . 8 (𝜑 → ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
119111, 118eqeltrd 2698 . . . . . . 7 (𝜑 → (𝐵(,]𝐶) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
12017tgioo2 22529 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
121120oveq1i 6620 . . . . . . . 8 ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
12228a1i 11 . . . . . . . . 9 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
123 ioossre 12185 . . . . . . . . . . . 12 (𝐷(,)𝐶) ⊆ ℝ
12413, 123sstri 3596 . . . . . . . . . . 11 (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℝ
125124a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℝ)
12620snssd 4314 . . . . . . . . . 10 (𝜑 → {𝐶} ⊆ ℝ)
127125, 126unssd 3772 . . . . . . . . 9 (𝜑 → ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ⊆ ℝ)
128 reex 9979 . . . . . . . . . 10 ℝ ∈ V
129128a1i 11 . . . . . . . . 9 (𝜑 → ℝ ∈ V)
130 restabs 20892 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
131122, 127, 129, 130syl3anc 1323 . . . . . . . 8 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
132121, 131syl5eq 2667 . . . . . . 7 (𝜑 → ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
133119, 132eleqtrd 2700 . . . . . 6 (𝜑 → (𝐵(,]𝐶) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
134 isopn3i 20809 . . . . . 6 ((((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top ∧ (𝐵(,]𝐶) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘(𝐵(,]𝐶)) = (𝐵(,]𝐶))
13535, 133, 134syl2anc 692 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘(𝐵(,]𝐶)) = (𝐵(,]𝐶))
13627, 135eqtr2d 2656 . . . 4 (𝜑 → (𝐵(,]𝐶) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘((𝐵(,)𝐶) ∪ {𝐶})))
13724, 136eleqtrd 2700 . . 3 (𝜑𝐶 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘((𝐵(,)𝐶) ∪ {𝐶})))
13810, 12, 16, 17, 18, 137limcres 23573 . 2 (𝜑 → (((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)) lim 𝐶) = ((𝐹 ↾ (𝐷(,)𝐶)) lim 𝐶))
1397, 138eqtrd 2655 1 (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐶) = ((𝐹 ↾ (𝐷(,)𝐶)) lim 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  Vcvv 3189  cun 3557  cin 3558  wss 3559  {csn 4153   class class class wbr 4618  ran crn 5080  cres 5081  wf 5848  cfv 5852  (class class class)co 6610  cc 9886  cr 9887  +∞cpnf 10023  *cxr 10025   < clt 10026  cle 10027  (,)cioo 12125  (,]cioc 12126  t crest 16013  TopOpenctopn 16014  topGenctg 16030  fldccnfld 19678  Topctop 20630  intcnt 20744   lim climc 23549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fi 8269  df-sup 8300  df-inf 8301  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ioc 12130  df-icc 12132  df-fz 12277  df-seq 12750  df-exp 12809  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-plusg 15886  df-mulr 15887  df-starv 15888  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-rest 16015  df-topn 16016  df-topgen 16036  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-ntr 20747  df-cnp 20955  df-xms 22048  df-ms 22049  df-limc 23553
This theorem is referenced by:  fouriersw  39781
  Copyright terms: Public domain W3C validator