MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcun Structured version   Visualization version   GIF version

Theorem limcun 24487
Description: A point is a limit of 𝐹 on 𝐴𝐵 iff it is the limit of the restriction of 𝐹 to 𝐴 and to 𝐵. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
limcun.1 (𝜑𝐴 ⊆ ℂ)
limcun.2 (𝜑𝐵 ⊆ ℂ)
limcun.3 (𝜑𝐹:(𝐴𝐵)⟶ℂ)
Assertion
Ref Expression
limcun (𝜑 → (𝐹 lim 𝐶) = (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)))

Proof of Theorem limcun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 24466 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐶) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐶 ∈ ℂ))
21simp3d 1140 . . . 4 (𝑥 ∈ (𝐹 lim 𝐶) → 𝐶 ∈ ℂ)
32a1i 11 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐶) → 𝐶 ∈ ℂ))
4 elinel1 4171 . . . . 5 (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) → 𝑥 ∈ ((𝐹𝐴) lim 𝐶))
5 limcrcl 24466 . . . . . 6 (𝑥 ∈ ((𝐹𝐴) lim 𝐶) → ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ ℂ ∧ 𝐶 ∈ ℂ))
65simp3d 1140 . . . . 5 (𝑥 ∈ ((𝐹𝐴) lim 𝐶) → 𝐶 ∈ ℂ)
74, 6syl 17 . . . 4 (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) → 𝐶 ∈ ℂ)
87a1i 11 . . 3 (𝜑 → (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) → 𝐶 ∈ ℂ))
9 prfi 8787 . . . . . . . 8 {𝐴, 𝐵} ∈ Fin
109a1i 11 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → {𝐴, 𝐵} ∈ Fin)
11 limcun.1 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
1211adantr 483 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → 𝐴 ⊆ ℂ)
13 limcun.2 . . . . . . . . 9 (𝜑𝐵 ⊆ ℂ)
1413adantr 483 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → 𝐵 ⊆ ℂ)
15 cnex 10612 . . . . . . . . . . 11 ℂ ∈ V
1615ssex 5217 . . . . . . . . . 10 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
1712, 16syl 17 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → 𝐴 ∈ V)
1815ssex 5217 . . . . . . . . . 10 (𝐵 ⊆ ℂ → 𝐵 ∈ V)
1914, 18syl 17 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → 𝐵 ∈ V)
20 sseq1 3991 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑦 ⊆ ℂ ↔ 𝐴 ⊆ ℂ))
21 sseq1 3991 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦 ⊆ ℂ ↔ 𝐵 ⊆ ℂ))
2220, 21ralprg 4625 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ ↔ (𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)))
2317, 19, 22syl2anc 586 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → (∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ ↔ (𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)))
2412, 14, 23mpbir2and 711 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → ∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ)
25 limcun.3 . . . . . . . . 9 (𝜑𝐹:(𝐴𝐵)⟶ℂ)
2625adantr 483 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → 𝐹:(𝐴𝐵)⟶ℂ)
27 uniiun 4974 . . . . . . . . . 10 {𝐴, 𝐵} = 𝑦 ∈ {𝐴, 𝐵}𝑦
28 uniprg 4845 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} = (𝐴𝐵))
2917, 19, 28syl2anc 586 . . . . . . . . . 10 ((𝜑𝐶 ∈ ℂ) → {𝐴, 𝐵} = (𝐴𝐵))
3027, 29syl5eqr 2870 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → 𝑦 ∈ {𝐴, 𝐵}𝑦 = (𝐴𝐵))
3130feq2d 6494 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → (𝐹: 𝑦 ∈ {𝐴, 𝐵}𝑦⟶ℂ ↔ 𝐹:(𝐴𝐵)⟶ℂ))
3226, 31mpbird 259 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → 𝐹: 𝑦 ∈ {𝐴, 𝐵}𝑦⟶ℂ)
33 simpr 487 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
3410, 24, 32, 33limciun 24486 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → (𝐹 lim 𝐶) = (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶)))
3534eleq2d 2898 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶))))
36 reseq2 5842 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
3736oveq1d 7165 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((𝐹𝑦) lim 𝐶) = ((𝐹𝐴) lim 𝐶))
3837eleq2d 2898 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ 𝑥 ∈ ((𝐹𝐴) lim 𝐶)))
39 reseq2 5842 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
4039oveq1d 7165 . . . . . . . . . . 11 (𝑦 = 𝐵 → ((𝐹𝑦) lim 𝐶) = ((𝐹𝐵) lim 𝐶))
4140eleq2d 2898 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)))
4238, 41ralprg 4625 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
4317, 19, 42syl2anc 586 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → (∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
4443anbi2d 630 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)))))
45 limccl 24467 . . . . . . . . . 10 ((𝐹𝐴) lim 𝐶) ⊆ ℂ
4645sseli 3962 . . . . . . . . 9 (𝑥 ∈ ((𝐹𝐴) lim 𝐶) → 𝑥 ∈ ℂ)
4746adantr 483 . . . . . . . 8 ((𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)) → 𝑥 ∈ ℂ)
4847pm4.71ri 563 . . . . . . 7 ((𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
4944, 48syl6bbr 291 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶)) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
50 elriin 4995 . . . . . 6 (𝑥 ∈ (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶)) ↔ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶)))
51 elin 4168 . . . . . 6 (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)))
5249, 50, 513bitr4g 316 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (𝑥 ∈ (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶)) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶))))
5335, 52bitrd 281 . . . 4 ((𝜑𝐶 ∈ ℂ) → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶))))
5453ex 415 . . 3 (𝜑 → (𝐶 ∈ ℂ → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)))))
553, 8, 54pm5.21ndd 383 . 2 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶))))
5655eqrdv 2819 1 (𝜑 → (𝐹 lim 𝐶) = (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  cun 3933  cin 3934  wss 3935  {cpr 4562   cuni 4831   ciun 4911   ciin 4912  dom cdm 5549  cres 5551  wf 6345  (class class class)co 7150  Fincfn 8503  cc 10529   lim climc 24454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-fz 12887  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-rest 16690  df-topn 16691  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cnp 21830  df-xms 22924  df-ms 22925  df-limc 24458
This theorem is referenced by:  lhop  24607
  Copyright terms: Public domain W3C validator