MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limenpsi Structured version   Visualization version   GIF version

Theorem limenpsi 8694
Description: A limit ordinal is equinumerous to a proper subset of itself. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypothesis
Ref Expression
limenpsi.1 Lim 𝐴
Assertion
Ref Expression
limenpsi (𝐴𝑉𝐴 ≈ (𝐴 ∖ {∅}))

Proof of Theorem limenpsi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difexg 5233 . . 3 (𝐴𝑉 → (𝐴 ∖ {∅}) ∈ V)
2 limenpsi.1 . . . . . . 7 Lim 𝐴
3 limsuc 7566 . . . . . . 7 (Lim 𝐴 → (𝑥𝐴 ↔ suc 𝑥𝐴))
42, 3ax-mp 5 . . . . . 6 (𝑥𝐴 ↔ suc 𝑥𝐴)
54biimpi 218 . . . . 5 (𝑥𝐴 → suc 𝑥𝐴)
6 nsuceq0 6273 . . . . 5 suc 𝑥 ≠ ∅
7 eldifsn 4721 . . . . 5 (suc 𝑥 ∈ (𝐴 ∖ {∅}) ↔ (suc 𝑥𝐴 ∧ suc 𝑥 ≠ ∅))
85, 6, 7sylanblrc 592 . . . 4 (𝑥𝐴 → suc 𝑥 ∈ (𝐴 ∖ {∅}))
9 limord 6252 . . . . . . 7 (Lim 𝐴 → Ord 𝐴)
102, 9ax-mp 5 . . . . . 6 Ord 𝐴
11 ordelon 6217 . . . . . 6 ((Ord 𝐴𝑥𝐴) → 𝑥 ∈ On)
1210, 11mpan 688 . . . . 5 (𝑥𝐴𝑥 ∈ On)
13 ordelon 6217 . . . . . 6 ((Ord 𝐴𝑦𝐴) → 𝑦 ∈ On)
1410, 13mpan 688 . . . . 5 (𝑦𝐴𝑦 ∈ On)
15 suc11 6296 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (suc 𝑥 = suc 𝑦𝑥 = 𝑦))
1612, 14, 15syl2an 597 . . . 4 ((𝑥𝐴𝑦𝐴) → (suc 𝑥 = suc 𝑦𝑥 = 𝑦))
178, 16dom3 8555 . . 3 ((𝐴𝑉 ∧ (𝐴 ∖ {∅}) ∈ V) → 𝐴 ≼ (𝐴 ∖ {∅}))
181, 17mpdan 685 . 2 (𝐴𝑉𝐴 ≼ (𝐴 ∖ {∅}))
19 difss 4110 . . 3 (𝐴 ∖ {∅}) ⊆ 𝐴
20 ssdomg 8557 . . 3 (𝐴𝑉 → ((𝐴 ∖ {∅}) ⊆ 𝐴 → (𝐴 ∖ {∅}) ≼ 𝐴))
2119, 20mpi 20 . 2 (𝐴𝑉 → (𝐴 ∖ {∅}) ≼ 𝐴)
22 sbth 8639 . 2 ((𝐴 ≼ (𝐴 ∖ {∅}) ∧ (𝐴 ∖ {∅}) ≼ 𝐴) → 𝐴 ≈ (𝐴 ∖ {∅}))
2318, 21, 22syl2anc 586 1 (𝐴𝑉𝐴 ≈ (𝐴 ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  cdif 3935  wss 3938  c0 4293  {csn 4569   class class class wbr 5068  Ord word 6192  Oncon0 6193  Lim wlim 6194  suc csuc 6195  cen 8508  cdom 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-en 8512  df-dom 8513
This theorem is referenced by:  limensuci  8695  omenps  9120  infdifsn  9122  ominf4  9736
  Copyright terms: Public domain W3C validator