MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limensuci Structured version   Visualization version   GIF version

Theorem limensuci 8080
Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.)
Hypothesis
Ref Expression
limensuci.1 Lim 𝐴
Assertion
Ref Expression
limensuci (𝐴𝑉𝐴 ≈ suc 𝐴)

Proof of Theorem limensuci
StepHypRef Expression
1 limensuci.1 . . . . 5 Lim 𝐴
21limenpsi 8079 . . . 4 (𝐴𝑉𝐴 ≈ (𝐴 ∖ {∅}))
32ensymd 7951 . . 3 (𝐴𝑉 → (𝐴 ∖ {∅}) ≈ 𝐴)
4 0ex 4750 . . . 4 ∅ ∈ V
5 en2sn 7981 . . . 4 ((∅ ∈ V ∧ 𝐴𝑉) → {∅} ≈ {𝐴})
64, 5mpan 705 . . 3 (𝐴𝑉 → {∅} ≈ {𝐴})
7 incom 3783 . . . . 5 ((𝐴 ∖ {∅}) ∩ {∅}) = ({∅} ∩ (𝐴 ∖ {∅}))
8 disjdif 4012 . . . . 5 ({∅} ∩ (𝐴 ∖ {∅})) = ∅
97, 8eqtri 2643 . . . 4 ((𝐴 ∖ {∅}) ∩ {∅}) = ∅
10 limord 5743 . . . . . . 7 (Lim 𝐴 → Ord 𝐴)
111, 10ax-mp 5 . . . . . 6 Ord 𝐴
12 ordirr 5700 . . . . . 6 (Ord 𝐴 → ¬ 𝐴𝐴)
1311, 12ax-mp 5 . . . . 5 ¬ 𝐴𝐴
14 disjsn 4216 . . . . 5 ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐴)
1513, 14mpbir 221 . . . 4 (𝐴 ∩ {𝐴}) = ∅
16 unen 7984 . . . 4 ((((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) ∧ (((𝐴 ∖ {∅}) ∩ {∅}) = ∅ ∧ (𝐴 ∩ {𝐴}) = ∅)) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴}))
179, 15, 16mpanr12 720 . . 3 (((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴}))
183, 6, 17syl2anc 692 . 2 (𝐴𝑉 → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴}))
19 0ellim 5746 . . . . . 6 (Lim 𝐴 → ∅ ∈ 𝐴)
201, 19ax-mp 5 . . . . 5 ∅ ∈ 𝐴
214snss 4286 . . . . 5 (∅ ∈ 𝐴 ↔ {∅} ⊆ 𝐴)
2220, 21mpbi 220 . . . 4 {∅} ⊆ 𝐴
23 undif 4021 . . . 4 ({∅} ⊆ 𝐴 ↔ ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴)
2422, 23mpbi 220 . . 3 ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴
25 uncom 3735 . . 3 ({∅} ∪ (𝐴 ∖ {∅})) = ((𝐴 ∖ {∅}) ∪ {∅})
2624, 25eqtr3i 2645 . 2 𝐴 = ((𝐴 ∖ {∅}) ∪ {∅})
27 df-suc 5688 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2818, 26, 273brtr4g 4647 1 (𝐴𝑉𝐴 ≈ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  cdif 3552  cun 3553  cin 3554  wss 3555  c0 3891  {csn 4148   class class class wbr 4613  Ord word 5681  Lim wlim 5683  suc csuc 5684  cen 7896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-1o 7505  df-er 7687  df-en 7900  df-dom 7901
This theorem is referenced by:  limensuc  8081  infensuc  8082  omensuc  8497
  Copyright terms: Public domain W3C validator