Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflelimsup Structured version   Visualization version   GIF version

Theorem liminflelimsup 40511
Description: The superior limit is greater than or equal to the inferior limit. The second hypothesis is needed (see liminflelimsupcex 40532 for a counterexample). The inequality can be strict, see liminfltlimsupex 40516. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflelimsup.1 (𝜑𝐹𝑉)
liminflelimsup.2 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
Assertion
Ref Expression
liminflelimsup (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
Distinct variable group:   𝑗,𝐹,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem liminflelimsup
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminflelimsup.1 . 2 (𝜑𝐹𝑉)
2 liminflelimsup.2 . . 3 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
3 nfv 1992 . . . 4 𝑖𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅
4 nfv 1992 . . . 4 𝑘𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅
5 oveq1 6820 . . . . . 6 (𝑘 = 𝑖 → (𝑘[,)+∞) = (𝑖[,)+∞))
65rexeqdv 3284 . . . . 5 (𝑘 = 𝑖 → (∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑗 ∈ (𝑖[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
7 oveq1 6820 . . . . . . . . . 10 (𝑗 = 𝑙 → (𝑗[,)+∞) = (𝑙[,)+∞))
87imaeq2d 5624 . . . . . . . . 9 (𝑗 = 𝑙 → (𝐹 “ (𝑗[,)+∞)) = (𝐹 “ (𝑙[,)+∞)))
98ineq1d 3956 . . . . . . . 8 (𝑗 = 𝑙 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*))
109neeq1d 2991 . . . . . . 7 (𝑗 = 𝑙 → (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅))
1110cbvrexv 3311 . . . . . 6 (∃𝑗 ∈ (𝑖[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅)
1211a1i 11 . . . . 5 (𝑘 = 𝑖 → (∃𝑗 ∈ (𝑖[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅))
136, 12bitrd 268 . . . 4 (𝑘 = 𝑖 → (∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅))
143, 4, 13cbvral 3306 . . 3 (∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∀𝑖 ∈ ℝ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅)
152, 14sylib 208 . 2 (𝜑 → ∀𝑖 ∈ ℝ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅)
161, 15liminflelimsuplem 40510 1 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  cin 3714  c0 4058   class class class wbr 4804  cima 5269  cfv 6049  (class class class)co 6813  cr 10127  +∞cpnf 10263  *cxr 10265  cle 10267  [,)cico 12370  lim supclsp 14400  lim infclsi 40486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-ico 12374  df-limsup 14401  df-liminf 40487
This theorem is referenced by:  liminfgelimsup  40517  liminflelimsupuz  40520
  Copyright terms: Public domain W3C validator