Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflelimsuplem Structured version   Visualization version   GIF version

Theorem liminflelimsuplem 40325
Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflelimsuplem.1 (𝜑𝐹𝑉)
liminflelimsuplem.2 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
Assertion
Ref Expression
liminflelimsuplem (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝐹,𝑘   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem liminflelimsuplem
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . . . . . . . . . . 12 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑙 ∈ ℝ)
2 simpl 472 . . . . . . . . . . . 12 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑖 ∈ ℝ)
31, 2ifcld 4164 . . . . . . . . . . 11 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ)
43adantll 750 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ)
5 liminflelimsuplem.2 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
65ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
7 oveq1 6697 . . . . . . . . . . . 12 (𝑘 = if(𝑖𝑙, 𝑙, 𝑖) → (𝑘[,)+∞) = (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞))
87rexeqdv 3175 . . . . . . . . . . 11 (𝑘 = if(𝑖𝑙, 𝑙, 𝑖) → (∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
98rspcva 3338 . . . . . . . . . 10 ((if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → ∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
104, 6, 9syl2anc 694 . . . . . . . . 9 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → ∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
11 inss2 3867 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ*
12 infxrcl 12201 . . . . . . . . . . . . . 14 (((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
1311, 12ax-mp 5 . . . . . . . . . . . . 13 inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
1413a1i 11 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
15 inss2 3867 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ*
16 infxrcl 12201 . . . . . . . . . . . . . 14 (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
1715, 16ax-mp 5 . . . . . . . . . . . . 13 inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
1817a1i 11 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
19 inss2 3867 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ*
20 supxrcl 12183 . . . . . . . . . . . . . 14 (((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
2119, 20ax-mp 5 . . . . . . . . . . . . 13 sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
2221a1i 11 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
23 rexr 10123 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℝ → 𝑖 ∈ ℝ*)
2423ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖 ∈ ℝ*)
25 pnfxr 10130 . . . . . . . . . . . . . . . . . 18 +∞ ∈ ℝ*
2625a1i 11 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → +∞ ∈ ℝ*)
273rexrd 10127 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ*)
2827adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → if(𝑖𝑙, 𝑙, 𝑖) ∈ ℝ*)
29 icossxr 12296 . . . . . . . . . . . . . . . . . . . 20 (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞) ⊆ ℝ*
30 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞) → 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞))
3129, 30sseldi 3634 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞) → 𝑗 ∈ ℝ*)
3231adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑗 ∈ ℝ*)
33 max1 12054 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑖 ≤ if(𝑖𝑙, 𝑙, 𝑖))
3433adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖 ≤ if(𝑖𝑙, 𝑙, 𝑖))
35 simpr 476 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞))
3628, 26, 35icogelbd 40103 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → if(𝑖𝑙, 𝑙, 𝑖) ≤ 𝑗)
3724, 28, 32, 34, 36xrletrd 12031 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑖𝑗)
3824, 26, 37icossico2 40109 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝑗[,)+∞) ⊆ (𝑖[,)+∞))
3938imass2d 39794 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝐹 “ (𝑗[,)+∞)) ⊆ (𝐹 “ (𝑖[,)+∞)))
4039ssrind 39647 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*))
4111a1i 11 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
42 infxrss 12207 . . . . . . . . . . . . . 14 ((((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ∧ ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ*) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
4340, 41, 42syl2anc 694 . . . . . . . . . . . . 13 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
4443adantr 480 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
45 supxrcl 12183 . . . . . . . . . . . . . . 15 (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
4615, 45ax-mp 5 . . . . . . . . . . . . . 14 sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
4746a1i 11 . . . . . . . . . . . . 13 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
4815a1i 11 . . . . . . . . . . . . . 14 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
49 simpr 476 . . . . . . . . . . . . . 14 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
5048, 49infxrlesupxr 39976 . . . . . . . . . . . . 13 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
51 rexr 10123 . . . . . . . . . . . . . . . . . . 19 (𝑙 ∈ ℝ → 𝑙 ∈ ℝ*)
5251ad2antlr 763 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙 ∈ ℝ*)
53 max2 12056 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑙 ≤ if(𝑖𝑙, 𝑙, 𝑖))
5453adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙 ≤ if(𝑖𝑙, 𝑙, 𝑖))
5552, 28, 32, 54, 36xrletrd 12031 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → 𝑙𝑗)
5652, 26, 55icossico2 40109 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝑗[,)+∞) ⊆ (𝑙[,)+∞))
5756imass2d 39794 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → (𝐹 “ (𝑗[,)+∞)) ⊆ (𝐹 “ (𝑙[,)+∞)))
5857ssrind 39647 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*))
5919a1i 11 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
60 supxrss 12200 . . . . . . . . . . . . . . 15 ((((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ∧ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ⊆ ℝ*) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6158, 59, 60syl2anc 694 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6261adantr 480 . . . . . . . . . . . . 13 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6318, 47, 22, 50, 62xrletrd 12031 . . . . . . . . . . . 12 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6414, 18, 22, 44, 63xrletrd 12031 . . . . . . . . . . 11 ((((𝑖 ∈ ℝ ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6564ad5ant2345 1357 . . . . . . . . . 10 (((((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) ∧ 𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)) ∧ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6665rexlimdva2 39653 . . . . . . . . 9 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → (∃𝑗 ∈ (if(𝑖𝑙, 𝑙, 𝑖)[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
6710, 66mpd 15 . . . . . . . 8 (((𝜑𝑖 ∈ ℝ) ∧ 𝑙 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
6867ralrimiva 2995 . . . . . . 7 ((𝜑𝑖 ∈ ℝ) → ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))
69 nfv 1883 . . . . . . . . 9 𝑙𝜑
70 xrltso 12012 . . . . . . . . . . 11 < Or ℝ*
7170supex 8410 . . . . . . . . . 10 sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
7271a1i 11 . . . . . . . . 9 ((𝜑𝑙 ∈ ℝ) → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V)
73 breq2 4689 . . . . . . . . 9 (𝑦 = sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) → (inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
7469, 72, 73ralrnmpt3 39788 . . . . . . . 8 (𝜑 → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
7574adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ ℝ) → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑙 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )))
7668, 75mpbird 247 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → ∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦)
77 oveq1 6697 . . . . . . . . . . . . 13 (𝑙 = 𝑖 → (𝑙[,)+∞) = (𝑖[,)+∞))
7877imaeq2d 5501 . . . . . . . . . . . 12 (𝑙 = 𝑖 → (𝐹 “ (𝑙[,)+∞)) = (𝐹 “ (𝑖[,)+∞)))
7978ineq1d 3846 . . . . . . . . . . 11 (𝑙 = 𝑖 → ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*))
8079supeq1d 8393 . . . . . . . . . 10 (𝑙 = 𝑖 → sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
8180cbvmptv 4783 . . . . . . . . 9 (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
8281rneqi 5384 . . . . . . . 8 ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
8382raleqi 3172 . . . . . . 7 (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦)
8483a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → (∀𝑦 ∈ ran (𝑙 ∈ ℝ ↦ sup(((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦 ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦))
8576, 84mpbid 222 . . . . 5 ((𝜑𝑖 ∈ ℝ) → ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦)
86 supxrcl 12183 . . . . . . . . . 10 (((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
8711, 86ax-mp 5 . . . . . . . . 9 sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
8887rgenw 2953 . . . . . . . 8 𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
89 eqid 2651 . . . . . . . . 9 (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
9089rnmptss 6432 . . . . . . . 8 (∀𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ* → ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*)
9188, 90ax-mp 5 . . . . . . 7 ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*
9291a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*)
9313a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
94 infxrgelb 12203 . . . . . 6 ((ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ* ∧ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) → (inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦))
9592, 93, 94syl2anc 694 . . . . 5 ((𝜑𝑖 ∈ ℝ) → (inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ↔ ∀𝑦 ∈ ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑦))
9685, 95mpbird 247 . . . 4 ((𝜑𝑖 ∈ ℝ) → inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
9796ralrimiva 2995 . . 3 (𝜑 → ∀𝑖 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
98 nfv 1883 . . . 4 𝑖𝜑
99 nfcv 2793 . . . 4 𝑖
100 nfmpt1 4780 . . . . . 6 𝑖(𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
101100nfrn 5400 . . . . 5 𝑖ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
102 nfcv 2793 . . . . 5 𝑖*
103 nfcv 2793 . . . . 5 𝑖 <
104101, 102, 103nfinf 8429 . . . 4 𝑖inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )
105 infxrcl 12201 . . . . . 6 (ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ* → inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*)
10691, 105ax-mp 5 . . . . 5 inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*
107106a1i 11 . . . 4 (𝜑 → inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*)
10898, 99, 104, 93, 107supxrleubrnmptf 39993 . . 3 (𝜑 → (sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ↔ ∀𝑖 ∈ ℝ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )))
10997, 108mpbird 247 . 2 (𝜑 → sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
110 liminflelimsuplem.1 . . . 4 (𝜑𝐹𝑉)
111 eqid 2651 . . . 4 (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
112110, 111liminfvald 40314 . . 3 (𝜑 → (lim inf‘𝐹) = sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
113110, 89limsupvald 40305 . . 3 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
114112, 113breq12d 4698 . 2 (𝜑 → ((lim inf‘𝐹) ≤ (lim sup‘𝐹) ↔ sup(ran (𝑖 ∈ ℝ ↦ inf(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ inf(ran (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )))
115109, 114mpbird 247 1 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  cin 3606  wss 3607  c0 3948  ifcif 4119   class class class wbr 4685  cmpt 4762  ran crn 5144  cima 5146  cfv 5926  (class class class)co 6690  supcsup 8387  infcinf 8388  cr 9973  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  [,)cico 12215  lim supclsp 14245  lim infclsi 40301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-ico 12219  df-limsup 14246  df-liminf 40302
This theorem is referenced by:  liminflelimsup  40326
  Copyright terms: Public domain W3C validator