![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminflelimsupuz | Structured version Visualization version GIF version |
Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminflelimsupuz.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
liminflelimsupuz.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
liminflelimsupuz.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
Ref | Expression |
---|---|
liminflelimsupuz | ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminflelimsupuz.3 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
2 | liminflelimsupuz.2 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | 2 | fvexi 6363 | . . . 4 ⊢ 𝑍 ∈ V |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑍 ∈ V) |
5 | 1, 4 | fexd 39795 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
6 | liminflelimsupuz.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | 6, 2 | uzubico2 40300 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗 ∈ 𝑍) |
8 | 1 | ffnd 6207 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
9 | 8 | adantr 472 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐹 Fn 𝑍) |
10 | simpr 479 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
11 | id 22 | . . . . . . . . . . . . 13 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ 𝑍) | |
12 | 2, 11 | uzxrd 40190 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ*) |
13 | pnfxr 10284 | . . . . . . . . . . . . 13 ⊢ +∞ ∈ ℝ* | |
14 | 13 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → +∞ ∈ ℝ*) |
15 | 12 | xrleidd 40108 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ≤ 𝑗) |
16 | 2, 11 | uzred 40168 | . . . . . . . . . . . . 13 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ) |
17 | ltpnf 12147 | . . . . . . . . . . . . 13 ⊢ (𝑗 ∈ ℝ → 𝑗 < +∞) | |
18 | 16, 17 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → 𝑗 < +∞) |
19 | 12, 14, 12, 15, 18 | elicod 12417 | . . . . . . . . . . 11 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (𝑗[,)+∞)) |
20 | 19 | adantl 473 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (𝑗[,)+∞)) |
21 | 9, 10, 20 | fnfvima2 39977 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ (𝐹 “ (𝑗[,)+∞))) |
22 | 1 | ffvelrnda 6522 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ*) |
23 | 21, 22 | elind 3941 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*)) |
24 | ne0i 4064 | . . . . . . . 8 ⊢ ((𝐹‘𝑗) ∈ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) | |
25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) |
26 | 25 | ex 449 | . . . . . 6 ⊢ (𝜑 → (𝑗 ∈ 𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
27 | 26 | ad2antrr 764 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ (𝑘[,)+∞)) → (𝑗 ∈ 𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
28 | 27 | reximdva 3155 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (∃𝑗 ∈ (𝑘[,)+∞)𝑗 ∈ 𝑍 → ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
29 | 28 | ralimdva 3100 | . . 3 ⊢ (𝜑 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗 ∈ 𝑍 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
30 | 7, 29 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) |
31 | 5, 30 | liminflelimsup 40511 | 1 ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 ∃wrex 3051 Vcvv 3340 ∩ cin 3714 ∅c0 4058 class class class wbr 4804 “ cima 5269 Fn wfn 6044 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ℝcr 10127 +∞cpnf 10263 ℝ*cxr 10265 < clt 10266 ≤ cle 10267 ℤcz 11569 ℤ≥cuz 11879 [,)cico 12370 lim supclsp 14400 lim infclsi 40486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-sup 8513 df-inf 8514 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-n0 11485 df-z 11570 df-uz 11880 df-ioo 12372 df-ico 12374 df-fl 12787 df-ceil 12788 df-limsup 14401 df-liminf 40487 |
This theorem is referenced by: liminfgelimsupuz 40523 liminflimsupclim 40542 |
Copyright terms: Public domain | W3C validator |