Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfresico Structured version   Visualization version   GIF version

Theorem liminfresico 40321
Description: The inferior limit doesn't change when a function is restricted to an upperset of reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfresico.1 (𝜑𝑀 ∈ ℝ)
liminfresico.2 𝑍 = (𝑀[,)+∞)
liminfresico.3 (𝜑𝐹𝑉)
Assertion
Ref Expression
liminfresico (𝜑 → (lim inf‘(𝐹𝑍)) = (lim inf‘𝐹))

Proof of Theorem liminfresico
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminfresico.1 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℝ)
21rexrd 10127 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ*)
32ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀 ∈ ℝ*)
4 pnfxr 10130 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
54a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → +∞ ∈ ℝ*)
6 ressxr 10121 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
74a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → +∞ ∈ ℝ*)
8 icossre 12292 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑀[,)+∞) ⊆ ℝ)
91, 7, 8syl2anc 694 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀[,)+∞) ⊆ ℝ)
109adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝑀[,)+∞) ⊆ ℝ)
11 liminfresico.2 . . . . . . . . . . . . . . . . . . 19 𝑍 = (𝑀[,)+∞)
1211eleq2i 2722 . . . . . . . . . . . . . . . . . 18 (𝑘𝑍𝑘 ∈ (𝑀[,)+∞))
1312biimpi 206 . . . . . . . . . . . . . . . . 17 (𝑘𝑍𝑘 ∈ (𝑀[,)+∞))
1413adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → 𝑘 ∈ (𝑀[,)+∞))
1510, 14sseldd 3637 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → 𝑘 ∈ ℝ)
1615adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑘 ∈ ℝ)
17 simpr 476 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ (𝑘[,)+∞))
18 elicore 12264 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℝ ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ ℝ)
1916, 17, 18syl2anc 694 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ ℝ)
206, 19sseldi 3634 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ ℝ*)
211ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀 ∈ ℝ)
222adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → 𝑀 ∈ ℝ*)
234a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → +∞ ∈ ℝ*)
2422, 23, 14icogelbd 40103 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → 𝑀𝑘)
2524adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀𝑘)
266, 16sseldi 3634 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑘 ∈ ℝ*)
2726, 5, 17icogelbd 40103 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑘𝑦)
2821, 16, 19, 25, 27letrd 10232 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀𝑦)
2919ltpnfd 11993 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 < +∞)
303, 5, 20, 28, 29elicod 12262 . . . . . . . . . . 11 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ (𝑀[,)+∞))
3130, 11syl6eleqr 2741 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦𝑍)
3231ssd 39566 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑘[,)+∞) ⊆ 𝑍)
33 resima2 5467 . . . . . . . . 9 ((𝑘[,)+∞) ⊆ 𝑍 → ((𝐹𝑍) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞)))
3432, 33syl 17 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑍) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞)))
3534ineq1d 3846 . . . . . . 7 ((𝜑𝑘𝑍) → (((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
3635infeq1d 8424 . . . . . 6 ((𝜑𝑘𝑍) → inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
3736mpteq2dva 4777 . . . . 5 (𝜑 → (𝑘𝑍 ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘𝑍 ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
3837rneqd 5385 . . . 4 (𝜑 → ran (𝑘𝑍 ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘𝑍 ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
3911, 9syl5eqss 3682 . . . . 5 (𝜑𝑍 ⊆ ℝ)
4039mptima2 39771 . . . 4 (𝜑 → ((𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑘𝑍 ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
4139mptima2 39771 . . . 4 (𝜑 → ((𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑘𝑍 ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
4238, 40, 413eqtr4d 2695 . . 3 (𝜑 → ((𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ((𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍))
4342supeq1d 8393 . 2 (𝜑 → sup(((𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ) = sup(((𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
44 eqid 2651 . . 3 (𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
45 liminfresico.3 . . . 4 (𝜑𝐹𝑉)
4645resexd 39635 . . 3 (𝜑 → (𝐹𝑍) ∈ V)
4711supeq1i 8394 . . . . 5 sup(𝑍, ℝ*, < ) = sup((𝑀[,)+∞), ℝ*, < )
4847a1i 11 . . . 4 (𝜑 → sup(𝑍, ℝ*, < ) = sup((𝑀[,)+∞), ℝ*, < ))
491renepnfd 10128 . . . . 5 (𝜑𝑀 ≠ +∞)
50 icopnfsup 12704 . . . . 5 ((𝑀 ∈ ℝ*𝑀 ≠ +∞) → sup((𝑀[,)+∞), ℝ*, < ) = +∞)
512, 49, 50syl2anc 694 . . . 4 (𝜑 → sup((𝑀[,)+∞), ℝ*, < ) = +∞)
5248, 51eqtrd 2685 . . 3 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
5344, 46, 39, 52liminfval2 40318 . 2 (𝜑 → (lim inf‘(𝐹𝑍)) = sup(((𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
54 eqid 2651 . . 3 (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
5554, 45, 39, 52liminfval2 40318 . 2 (𝜑 → (lim inf‘𝐹) = sup(((𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
5643, 53, 553eqtr4d 2695 1 (𝜑 → (lim inf‘(𝐹𝑍)) = (lim inf‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wne 2823  Vcvv 3231  cin 3606  wss 3607   class class class wbr 4685  cmpt 4762  ran crn 5144  cres 5145  cima 5146  cfv 5926  (class class class)co 6690  supcsup 8387  infcinf 8388  cr 9973  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  [,)cico 12215  lim infclsi 40301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-ico 12219  df-liminf 40302
This theorem is referenced by:  liminfresre  40329  liminfresicompt  40330  liminfresuz  40334
  Copyright terms: Public domain W3C validator