Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfresico Structured version   Visualization version   GIF version

Theorem liminfresico 41932
Description: The inferior limit doesn't change when a function is restricted to an upperset of reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfresico.1 (𝜑𝑀 ∈ ℝ)
liminfresico.2 𝑍 = (𝑀[,)+∞)
liminfresico.3 (𝜑𝐹𝑉)
Assertion
Ref Expression
liminfresico (𝜑 → (lim inf‘(𝐹𝑍)) = (lim inf‘𝐹))

Proof of Theorem liminfresico
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminfresico.1 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℝ)
21rexrd 10680 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ*)
32ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀 ∈ ℝ*)
4 pnfxr 10684 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
54a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → +∞ ∈ ℝ*)
6 ressxr 10674 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
74a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → +∞ ∈ ℝ*)
8 icossre 12807 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑀[,)+∞) ⊆ ℝ)
91, 7, 8syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀[,)+∞) ⊆ ℝ)
109adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝑀[,)+∞) ⊆ ℝ)
11 liminfresico.2 . . . . . . . . . . . . . . . . . . 19 𝑍 = (𝑀[,)+∞)
1211eleq2i 2904 . . . . . . . . . . . . . . . . . 18 (𝑘𝑍𝑘 ∈ (𝑀[,)+∞))
1312biimpi 217 . . . . . . . . . . . . . . . . 17 (𝑘𝑍𝑘 ∈ (𝑀[,)+∞))
1413adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → 𝑘 ∈ (𝑀[,)+∞))
1510, 14sseldd 3967 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → 𝑘 ∈ ℝ)
1615adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑘 ∈ ℝ)
17 simpr 485 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ (𝑘[,)+∞))
18 elicore 12779 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℝ ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ ℝ)
1916, 17, 18syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ ℝ)
206, 19sseldi 3964 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ ℝ*)
211ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀 ∈ ℝ)
222adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → 𝑀 ∈ ℝ*)
234a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → +∞ ∈ ℝ*)
2422, 23, 14icogelbd 41714 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → 𝑀𝑘)
2524adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀𝑘)
266, 16sseldi 3964 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑘 ∈ ℝ*)
2726, 5, 17icogelbd 41714 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑘𝑦)
2821, 16, 19, 25, 27letrd 10786 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀𝑦)
2919ltpnfd 12506 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 < +∞)
303, 5, 20, 28, 29elicod 12777 . . . . . . . . . . 11 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ (𝑀[,)+∞))
3130, 11eleqtrrdi 2924 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦𝑍)
3231ssd 41224 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑘[,)+∞) ⊆ 𝑍)
33 resima2 5882 . . . . . . . . 9 ((𝑘[,)+∞) ⊆ 𝑍 → ((𝐹𝑍) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞)))
3432, 33syl 17 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑍) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞)))
3534ineq1d 4187 . . . . . . 7 ((𝜑𝑘𝑍) → (((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
3635infeq1d 8930 . . . . . 6 ((𝜑𝑘𝑍) → inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
3736mpteq2dva 5153 . . . . 5 (𝜑 → (𝑘𝑍 ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘𝑍 ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
3837rneqd 5802 . . . 4 (𝜑 → ran (𝑘𝑍 ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘𝑍 ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
3911, 9eqsstrid 4014 . . . . 5 (𝜑𝑍 ⊆ ℝ)
4039mptima2 41397 . . . 4 (𝜑 → ((𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑘𝑍 ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
4139mptima2 41397 . . . 4 (𝜑 → ((𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑘𝑍 ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
4238, 40, 413eqtr4d 2866 . . 3 (𝜑 → ((𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ((𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍))
4342supeq1d 8899 . 2 (𝜑 → sup(((𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ) = sup(((𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
44 eqid 2821 . . 3 (𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
45 liminfresico.3 . . . 4 (𝜑𝐹𝑉)
4645resexd 41283 . . 3 (𝜑 → (𝐹𝑍) ∈ V)
4711supeq1i 8900 . . . . 5 sup(𝑍, ℝ*, < ) = sup((𝑀[,)+∞), ℝ*, < )
4847a1i 11 . . . 4 (𝜑 → sup(𝑍, ℝ*, < ) = sup((𝑀[,)+∞), ℝ*, < ))
491renepnfd 10681 . . . . 5 (𝜑𝑀 ≠ +∞)
50 icopnfsup 13223 . . . . 5 ((𝑀 ∈ ℝ*𝑀 ≠ +∞) → sup((𝑀[,)+∞), ℝ*, < ) = +∞)
512, 49, 50syl2anc 584 . . . 4 (𝜑 → sup((𝑀[,)+∞), ℝ*, < ) = +∞)
5248, 51eqtrd 2856 . . 3 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
5344, 46, 39, 52liminfval2 41929 . 2 (𝜑 → (lim inf‘(𝐹𝑍)) = sup(((𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
54 eqid 2821 . . 3 (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
5554, 45, 39, 52liminfval2 41929 . 2 (𝜑 → (lim inf‘𝐹) = sup(((𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
5643, 53, 553eqtr4d 2866 1 (𝜑 → (lim inf‘(𝐹𝑍)) = (lim inf‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3016  Vcvv 3495  cin 3934  wss 3935   class class class wbr 5058  cmpt 5138  ran crn 5550  cres 5551  cima 5552  cfv 6349  (class class class)co 7145  supcsup 8893  infcinf 8894  cr 10525  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  [,)cico 12730  lim infclsi 41912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-inf 8896  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-q 12338  df-ico 12734  df-liminf 41913
This theorem is referenced by:  liminfresre  41940  liminfresicompt  41941  liminfresuz  41945
  Copyright terms: Public domain W3C validator