Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfresxr Structured version   Visualization version   GIF version

Theorem liminfresxr 42054
Description: The inferior limit of a function only depends on the preimage of the extended real part. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfresxr.1 (𝜑𝐹𝑉)
liminfresxr.2 (𝜑 → Fun 𝐹)
liminfresxr.3 𝐴 = (𝐹 “ ℝ*)
Assertion
Ref Expression
liminfresxr (𝜑 → (lim inf‘(𝐹𝐴)) = (lim inf‘𝐹))

Proof of Theorem liminfresxr
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resimass 41516 . . . . . . . . 9 ((𝐹𝐴) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞))
21a1i 11 . . . . . . . 8 (𝜑 → ((𝐹𝐴) “ (𝑘[,)+∞)) ⊆ (𝐹 “ (𝑘[,)+∞)))
32ssrind 4215 . . . . . . 7 (𝜑 → (((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
4 liminfresxr.2 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
54funfnd 6389 . . . . . . . . . . . 12 (𝜑𝐹 Fn dom 𝐹)
6 elinel1 4175 . . . . . . . . . . . 12 (𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑦 ∈ (𝐹 “ (𝑘[,)+∞)))
7 fvelima2 41538 . . . . . . . . . . . 12 ((𝐹 Fn dom 𝐹𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))(𝐹𝑥) = 𝑦)
85, 6, 7syl2an 597 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))(𝐹𝑥) = 𝑦)
9 elinel1 4175 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) → 𝑥 ∈ dom 𝐹)
1093ad2ant2 1130 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ dom 𝐹)
11 simpr 487 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) = 𝑦)
12 elinel2 4176 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑦 ∈ ℝ*)
1312adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ (𝐹𝑥) = 𝑦) → 𝑦 ∈ ℝ*)
1411, 13eqeltrd 2916 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) ∈ ℝ*)
15143adant2 1127 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) ∈ ℝ*)
1610, 15jca 514 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*))
17163adant1l 1172 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*))
18 simp1l 1193 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝜑)
19 elpreima 6831 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹 “ ℝ*) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*)))
205, 19syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥 ∈ (𝐹 “ ℝ*) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*)))
2118, 20syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → (𝑥 ∈ (𝐹 “ ℝ*) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ ℝ*)))
2217, 21mpbird 259 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (𝐹 “ ℝ*))
23 liminfresxr.3 . . . . . . . . . . . . . . . . 17 𝐴 = (𝐹 “ ℝ*)
2422, 23eleqtrrdi 2927 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) ∧ (𝐹𝑥) = 𝑦) → 𝑥𝐴)
25243expa 1114 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥𝐴)
2625fvresd 6693 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
27 simpr 487 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) = 𝑦)
2826, 27eqtr2d 2860 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑦 = ((𝐹𝐴)‘𝑥))
29 simplll 773 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝜑)
304funresd 41539 . . . . . . . . . . . . . . . 16 (𝜑 → Fun (𝐹𝐴))
3129, 30syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → Fun (𝐹𝐴))
329ad2antlr 725 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ dom 𝐹)
3325, 32elind 4174 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (𝐴 ∩ dom 𝐹))
34 dmres 5878 . . . . . . . . . . . . . . . 16 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
3533, 34eleqtrrdi 2927 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ dom (𝐹𝐴))
3631, 35jca 514 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → (Fun (𝐹𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)))
37 elinel2 4176 . . . . . . . . . . . . . . 15 (𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞)) → 𝑥 ∈ (𝑘[,)+∞))
3837ad2antlr 725 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (𝑘[,)+∞))
39 funfvima 6995 . . . . . . . . . . . . . 14 ((Fun (𝐹𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) → (𝑥 ∈ (𝑘[,)+∞) → ((𝐹𝐴)‘𝑥) ∈ ((𝐹𝐴) “ (𝑘[,)+∞))))
4036, 38, 39sylc 65 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → ((𝐹𝐴)‘𝑥) ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4128, 40eqeltrd 2916 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) ∧ 𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))) ∧ (𝐹𝑥) = 𝑦) → 𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4241rexlimdva2 3290 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → (∃𝑥 ∈ (dom 𝐹 ∩ (𝑘[,)+∞))(𝐹𝑥) = 𝑦𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞))))
438, 42mpd 15 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4443ralrimiva 3185 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
45 dfss3 3959 . . . . . . . . 9 (((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹𝐴) “ (𝑘[,)+∞)) ↔ ∀𝑦 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)𝑦 ∈ ((𝐹𝐴) “ (𝑘[,)+∞)))
4644, 45sylibr 236 . . . . . . . 8 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ((𝐹𝐴) “ (𝑘[,)+∞)))
47 inss2 4209 . . . . . . . . 9 ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
4847a1i 11 . . . . . . . 8 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
4946, 48ssind 4212 . . . . . . 7 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ (((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*))
503, 49eqssd 3987 . . . . . 6 (𝜑 → (((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
5150infeq1d 8944 . . . . 5 (𝜑 → inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
5251mpteq2dv 5165 . . . 4 (𝜑 → (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
5352rneqd 5811 . . 3 (𝜑 → ran (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
5453supeq1d 8913 . 2 (𝜑 → sup(ran (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
55 liminfresxr.1 . . . 4 (𝜑𝐹𝑉)
5655resexd 41409 . . 3 (𝜑 → (𝐹𝐴) ∈ V)
57 eqid 2824 . . . 4 (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
5857liminfval 42046 . . 3 ((𝐹𝐴) ∈ V → (lim inf‘(𝐹𝐴)) = sup(ran (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
5956, 58syl 17 . 2 (𝜑 → (lim inf‘(𝐹𝐴)) = sup(ran (𝑘 ∈ ℝ ↦ inf((((𝐹𝐴) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
60 eqid 2824 . . . 4 (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
6160liminfval 42046 . . 3 (𝐹𝑉 → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
6255, 61syl 17 . 2 (𝜑 → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
6354, 59, 623eqtr4d 2869 1 (𝜑 → (lim inf‘(𝐹𝐴)) = (lim inf‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142  Vcvv 3497  cin 3938  wss 3939  cmpt 5149  ccnv 5557  dom cdm 5558  ran crn 5559  cres 5560  cima 5561  Fun wfun 6352   Fn wfn 6353  cfv 6358  (class class class)co 7159  supcsup 8907  infcinf 8908  cr 10539  +∞cpnf 10675  *cxr 10677   < clt 10678  [,)cico 12743  lim infclsi 42038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-pre-lttri 10614  ax-pre-lttrn 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-liminf 42039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator