MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limom Structured version   Visualization version   GIF version

Theorem limom 7122
Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
limom Lim ω

Proof of Theorem limom
StepHypRef Expression
1 ordom 7116 . 2 Ord ω
2 ordeleqon 7030 . . 3 (Ord ω ↔ (ω ∈ On ∨ ω = On))
3 ordirr 5779 . . . . . . 7 (Ord ω → ¬ ω ∈ ω)
41, 3ax-mp 5 . . . . . 6 ¬ ω ∈ ω
5 elom 7110 . . . . . . 7 (ω ∈ ω ↔ (ω ∈ On ∧ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)))
65baib 964 . . . . . 6 (ω ∈ On → (ω ∈ ω ↔ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥)))
74, 6mtbii 315 . . . . 5 (ω ∈ On → ¬ ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))
8 limomss 7112 . . . . . . . . . . 11 (Lim 𝑥 → ω ⊆ 𝑥)
9 limord 5822 . . . . . . . . . . . 12 (Lim 𝑥 → Ord 𝑥)
10 ordsseleq 5790 . . . . . . . . . . . 12 ((Ord ω ∧ Ord 𝑥) → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥)))
111, 9, 10sylancr 696 . . . . . . . . . . 11 (Lim 𝑥 → (ω ⊆ 𝑥 ↔ (ω ∈ 𝑥 ∨ ω = 𝑥)))
128, 11mpbid 222 . . . . . . . . . 10 (Lim 𝑥 → (ω ∈ 𝑥 ∨ ω = 𝑥))
1312ord 391 . . . . . . . . 9 (Lim 𝑥 → (¬ ω ∈ 𝑥 → ω = 𝑥))
14 limeq 5773 . . . . . . . . . 10 (ω = 𝑥 → (Lim ω ↔ Lim 𝑥))
1514biimprcd 240 . . . . . . . . 9 (Lim 𝑥 → (ω = 𝑥 → Lim ω))
1613, 15syld 47 . . . . . . . 8 (Lim 𝑥 → (¬ ω ∈ 𝑥 → Lim ω))
1716con1d 139 . . . . . . 7 (Lim 𝑥 → (¬ Lim ω → ω ∈ 𝑥))
1817com12 32 . . . . . 6 (¬ Lim ω → (Lim 𝑥 → ω ∈ 𝑥))
1918alrimiv 1895 . . . . 5 (¬ Lim ω → ∀𝑥(Lim 𝑥 → ω ∈ 𝑥))
207, 19nsyl2 142 . . . 4 (ω ∈ On → Lim ω)
21 limon 7078 . . . . 5 Lim On
22 limeq 5773 . . . . 5 (ω = On → (Lim ω ↔ Lim On))
2321, 22mpbiri 248 . . . 4 (ω = On → Lim ω)
2420, 23jaoi 393 . . 3 ((ω ∈ On ∨ ω = On) → Lim ω)
252, 24sylbi 207 . 2 (Ord ω → Lim ω)
261, 25ax-mp 5 1 Lim ω
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wal 1521   = wceq 1523  wcel 2030  wss 3607  Ord word 5760  Oncon0 5761  Lim wlim 5762  ωcom 7107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-tr 4786  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-om 7108
This theorem is referenced by:  peano2b  7123  ssnlim  7125  peano1  7127  onesuc  7655  oaabslem  7768  oaabs2  7770  omabslem  7771  infensuc  8179  infeq5i  8571  elom3  8583  omenps  8590  omensuc  8591  infdifsn  8592  cardlim  8836  r1om  9104  cfom  9124  ominf4  9172  alephom  9445  wunex3  9601
  Copyright terms: Public domain W3C validator