MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limomss Structured version   Visualization version   GIF version

Theorem limomss 7112
Description: The class of natural numbers is a subclass of any (infinite) limit ordinal. Exercise 1 of [TakeutiZaring] p. 44. Remarkably, our proof does not require the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
limomss (Lim 𝐴 → ω ⊆ 𝐴)

Proof of Theorem limomss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limord 5822 . 2 (Lim 𝐴 → Ord 𝐴)
2 ordeleqon 7030 . . 3 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
3 elom 7110 . . . . . . . . . 10 (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦𝑥𝑦)))
43simprbi 479 . . . . . . . . 9 (𝑥 ∈ ω → ∀𝑦(Lim 𝑦𝑥𝑦))
5 limeq 5773 . . . . . . . . . . 11 (𝑦 = 𝐴 → (Lim 𝑦 ↔ Lim 𝐴))
6 eleq2 2719 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
75, 6imbi12d 333 . . . . . . . . . 10 (𝑦 = 𝐴 → ((Lim 𝑦𝑥𝑦) ↔ (Lim 𝐴𝑥𝐴)))
87spcgv 3324 . . . . . . . . 9 (𝐴 ∈ On → (∀𝑦(Lim 𝑦𝑥𝑦) → (Lim 𝐴𝑥𝐴)))
94, 8syl5 34 . . . . . . . 8 (𝐴 ∈ On → (𝑥 ∈ ω → (Lim 𝐴𝑥𝐴)))
109com23 86 . . . . . . 7 (𝐴 ∈ On → (Lim 𝐴 → (𝑥 ∈ ω → 𝑥𝐴)))
1110imp 444 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑥 ∈ ω → 𝑥𝐴))
1211ssrdv 3642 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝐴) → ω ⊆ 𝐴)
1312ex 449 . . . 4 (𝐴 ∈ On → (Lim 𝐴 → ω ⊆ 𝐴))
14 omsson 7111 . . . . . 6 ω ⊆ On
15 sseq2 3660 . . . . . 6 (𝐴 = On → (ω ⊆ 𝐴 ↔ ω ⊆ On))
1614, 15mpbiri 248 . . . . 5 (𝐴 = On → ω ⊆ 𝐴)
1716a1d 25 . . . 4 (𝐴 = On → (Lim 𝐴 → ω ⊆ 𝐴))
1813, 17jaoi 393 . . 3 ((𝐴 ∈ On ∨ 𝐴 = On) → (Lim 𝐴 → ω ⊆ 𝐴))
192, 18sylbi 207 . 2 (Ord 𝐴 → (Lim 𝐴 → ω ⊆ 𝐴))
201, 19mpcom 38 1 (Lim 𝐴 → ω ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  wal 1521   = wceq 1523  wcel 2030  wss 3607  Ord word 5760  Oncon0 5761  Lim wlim 5762  ωcom 7107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-tr 4786  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-om 7108
This theorem is referenced by:  limom  7122  rdg0  7562  frfnom  7575  frsuc  7577  r1fin  8674  rankdmr1  8702  rankeq0b  8761  cardlim  8836  ackbij2  9103  cfom  9124  wunom  9580  inar1  9635
  Copyright terms: Public domain W3C validator