Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsup0 Structured version   Visualization version   GIF version

Theorem limsup0 41981
Description: The superior limit of the empty set (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
limsup0 (lim sup‘∅) = -∞

Proof of Theorem limsup0
StepHypRef Expression
1 0ex 5214 . . 3 ∅ ∈ V
2 eqid 2824 . . . 4 (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
32limsupval 14834 . . 3 (∅ ∈ V → (lim sup‘∅) = inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
41, 3ax-mp 5 . 2 (lim sup‘∅) = inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )
5 0ima 5949 . . . . . . . . . 10 (∅ “ (𝑥[,)+∞)) = ∅
65ineq1i 4188 . . . . . . . . 9 ((∅ “ (𝑥[,)+∞)) ∩ ℝ*) = (∅ ∩ ℝ*)
7 0in 4350 . . . . . . . . 9 (∅ ∩ ℝ*) = ∅
86, 7eqtri 2847 . . . . . . . 8 ((∅ “ (𝑥[,)+∞)) ∩ ℝ*) = ∅
98supeq1i 8914 . . . . . . 7 sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(∅, ℝ*, < )
10 xrsup0 12719 . . . . . . 7 sup(∅, ℝ*, < ) = -∞
119, 10eqtri 2847 . . . . . 6 sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) = -∞
1211mpteq2i 5161 . . . . 5 (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑥 ∈ ℝ ↦ -∞)
13 ren0 41681 . . . . . 6 ℝ ≠ ∅
1413a1i 11 . . . . 5 (⊤ → ℝ ≠ ∅)
1512, 14rnmptc 6972 . . . 4 (⊤ → ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = {-∞})
1615mptru 1543 . . 3 ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = {-∞}
1716infeq1i 8945 . 2 inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf({-∞}, ℝ*, < )
18 xrltso 12537 . . 3 < Or ℝ*
19 mnfxr 10701 . . 3 -∞ ∈ ℝ*
20 infsn 8972 . . 3 (( < Or ℝ* ∧ -∞ ∈ ℝ*) → inf({-∞}, ℝ*, < ) = -∞)
2118, 19, 20mp2an 690 . 2 inf({-∞}, ℝ*, < ) = -∞
224, 17, 213eqtri 2851 1 (lim sup‘∅) = -∞
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  wtru 1537  wcel 2113  wne 3019  Vcvv 3497  cin 3938  c0 4294  {csn 4570  cmpt 5149   Or wor 5476  ran crn 5559  cima 5561  cfv 6358  (class class class)co 7159  supcsup 8907  infcinf 8908  cr 10539  +∞cpnf 10675  -∞cmnf 10676  *cxr 10677   < clt 10678  [,)cico 12743  lim supclsp 14830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-limsup 14831
This theorem is referenced by:  climlimsupcex  42056  liminf0  42080  liminflelimsupcex  42084
  Copyright terms: Public domain W3C validator