Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequzmpt Structured version   Visualization version   GIF version

Theorem limsupequzmpt 40279
 Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequzmpt.j 𝑗𝜑
limsupequzmpt.m (𝜑𝑀 ∈ ℤ)
limsupequzmpt.n (𝜑𝑁 ∈ ℤ)
limsupequzmpt.a 𝐴 = (ℤ𝑀)
limsupequzmpt.b 𝐵 = (ℤ𝑁)
limsupequzmpt.c ((𝜑𝑗𝐴) → 𝐶𝑉)
limsupequzmpt.d ((𝜑𝑗𝐵) → 𝐶𝑊)
Assertion
Ref Expression
limsupequzmpt (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑗   𝑗,𝑀   𝑗,𝑁
Allowed substitution hints:   𝜑(𝑗)   𝐶(𝑗)   𝑉(𝑗)   𝑊(𝑗)

Proof of Theorem limsupequzmpt
StepHypRef Expression
1 limsupequzmpt.j . 2 𝑗𝜑
2 limsupequzmpt.m . 2 (𝜑𝑀 ∈ ℤ)
3 limsupequzmpt.n . 2 (𝜑𝑁 ∈ ℤ)
4 limsupequzmpt.a . 2 𝐴 = (ℤ𝑀)
5 limsupequzmpt.b . 2 𝐵 = (ℤ𝑁)
6 limsupequzmpt.c . 2 ((𝜑𝑗𝐴) → 𝐶𝑉)
7 limsupequzmpt.d . 2 ((𝜑𝑗𝐵) → 𝐶𝑊)
8 eqid 2651 . 2 if(𝑀𝑁, 𝑁, 𝑀) = if(𝑀𝑁, 𝑁, 𝑀)
91, 2, 3, 4, 5, 6, 7, 8limsupequzmptlem 40278 1 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523  Ⅎwnf 1748   ∈ wcel 2030  ifcif 4119   class class class wbr 4685   ↦ cmpt 4762  ‘cfv 5926   ≤ cle 10113  ℤcz 11415  ℤ≥cuz 11725  lim supclsp 14245 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-ico 12219  df-limsup 14246 This theorem is referenced by:  limsupequzmptf  40281  smflimsuplem4  41350  smflimsuplem5  41351  smflimsuplem8  41354  smflimsupmpt  41356
 Copyright terms: Public domain W3C validator