Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupge Structured version   Visualization version   GIF version

Theorem limsupge 40311
Description: The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupge.b (𝜑𝐵 ⊆ ℝ)
limsupge.f (𝜑𝐹:𝐵⟶ℝ*)
limsupge.a (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
limsupge (𝜑 → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑘 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem limsupge
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupge.b . . . 4 (𝜑𝐵 ⊆ ℝ)
2 limsupge.f . . . 4 (𝜑𝐹:𝐵⟶ℝ*)
3 limsupge.a . . . 4 (𝜑𝐴 ∈ ℝ*)
4 eqid 2651 . . . . 5 (𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
54limsuple 14253 . . . 4 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑖 ∈ ℝ 𝐴 ≤ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖)))
61, 2, 3, 5syl3anc 1366 . . 3 (𝜑 → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑖 ∈ ℝ 𝐴 ≤ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖)))
7 oveq1 6697 . . . . . . . . 9 (𝑗 = 𝑖 → (𝑗[,)+∞) = (𝑖[,)+∞))
87imaeq2d 5501 . . . . . . . 8 (𝑗 = 𝑖 → (𝐹 “ (𝑗[,)+∞)) = (𝐹 “ (𝑖[,)+∞)))
98ineq1d 3846 . . . . . . 7 (𝑗 = 𝑖 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*))
109supeq1d 8393 . . . . . 6 (𝑗 = 𝑖 → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
11 simpr 476 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → 𝑖 ∈ ℝ)
12 xrltso 12012 . . . . . . . 8 < Or ℝ*
1312supex 8410 . . . . . . 7 sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
1413a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℝ) → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V)
154, 10, 11, 14fvmptd3 39761 . . . . 5 ((𝜑𝑖 ∈ ℝ) → ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
1615breq2d 4697 . . . 4 ((𝜑𝑖 ∈ ℝ) → (𝐴 ≤ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) ↔ 𝐴 ≤ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )))
1716ralbidva 3014 . . 3 (𝜑 → (∀𝑖 ∈ ℝ 𝐴 ≤ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) ↔ ∀𝑖 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )))
186, 17bitrd 268 . 2 (𝜑 → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑖 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )))
19 oveq1 6697 . . . . . . . 8 (𝑖 = 𝑘 → (𝑖[,)+∞) = (𝑘[,)+∞))
2019imaeq2d 5501 . . . . . . 7 (𝑖 = 𝑘 → (𝐹 “ (𝑖[,)+∞)) = (𝐹 “ (𝑘[,)+∞)))
2120ineq1d 3846 . . . . . 6 (𝑖 = 𝑘 → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
2221supeq1d 8393 . . . . 5 (𝑖 = 𝑘 → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
2322breq2d 4697 . . . 4 (𝑖 = 𝑘 → (𝐴 ≤ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ 𝐴 ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
2423cbvralv 3201 . . 3 (∀𝑖 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑘 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
2524a1i 11 . 2 (𝜑 → (∀𝑖 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑘 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
2618, 25bitrd 268 1 (𝜑 → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑘 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  cin 3606  wss 3607   class class class wbr 4685  cmpt 4762  cima 5146  wf 5922  cfv 5926  (class class class)co 6690  supcsup 8387  cr 9973  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  [,)cico 12215  lim supclsp 14245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-limsup 14246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator