MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgle Structured version   Visualization version   GIF version

Theorem limsupgle 14836
Description: The defining property of the superior limit function. (Contributed by Mario Carneiro, 5-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
limsupval.1 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
limsupgle (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐺𝐶) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
Distinct variable groups:   𝑘,𝐹   𝐴,𝑗   𝐵,𝑗   𝐶,𝑗,𝑘   𝑗,𝐹
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐺(𝑗,𝑘)

Proof of Theorem limsupgle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limsupval.1 . . . . 5 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
21limsupgval 14835 . . . 4 (𝐶 ∈ ℝ → (𝐺𝐶) = sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ))
323ad2ant2 1130 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝐺𝐶) = sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ))
43breq1d 5078 . 2 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐺𝐶) ≤ 𝐴 ↔ sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝐴))
5 inss2 4208 . . 3 ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) ⊆ ℝ*
6 simp3 1134 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐴 ∈ ℝ*)
7 supxrleub 12722 . . 3 ((((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) ⊆ ℝ*𝐴 ∈ ℝ*) → (sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴))
85, 6, 7sylancr 589 . 2 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴))
9 imassrn 5942 . . . . . . 7 (𝐹 “ (𝐶[,)+∞)) ⊆ ran 𝐹
10 simp1r 1194 . . . . . . . 8 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐹:𝐵⟶ℝ*)
1110frnd 6523 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ran 𝐹 ⊆ ℝ*)
129, 11sstrid 3980 . . . . . 6 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝐹 “ (𝐶[,)+∞)) ⊆ ℝ*)
13 df-ss 3954 . . . . . 6 ((𝐹 “ (𝐶[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝐶[,)+∞)))
1412, 13sylib 220 . . . . 5 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝐶[,)+∞)))
15 imadmres 6093 . . . . 5 (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞))) = (𝐹 “ (𝐶[,)+∞))
1614, 15syl6eqr 2876 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) = (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞))))
1716raleqdv 3417 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴 ↔ ∀𝑥 ∈ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥𝐴))
1810ffnd 6517 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐹 Fn 𝐵)
1910fdmd 6525 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → dom 𝐹 = 𝐵)
2019ineq2d 4191 . . . . . 6 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐶[,)+∞) ∩ dom 𝐹) = ((𝐶[,)+∞) ∩ 𝐵))
21 dmres 5877 . . . . . 6 dom (𝐹 ↾ (𝐶[,)+∞)) = ((𝐶[,)+∞) ∩ dom 𝐹)
22 incom 4180 . . . . . 6 (𝐵 ∩ (𝐶[,)+∞)) = ((𝐶[,)+∞) ∩ 𝐵)
2320, 21, 223eqtr4g 2883 . . . . 5 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → dom (𝐹 ↾ (𝐶[,)+∞)) = (𝐵 ∩ (𝐶[,)+∞)))
24 inss1 4207 . . . . 5 (𝐵 ∩ (𝐶[,)+∞)) ⊆ 𝐵
2523, 24eqsstrdi 4023 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → dom (𝐹 ↾ (𝐶[,)+∞)) ⊆ 𝐵)
26 breq1 5071 . . . . 5 (𝑥 = (𝐹𝑗) → (𝑥𝐴 ↔ (𝐹𝑗) ≤ 𝐴))
2726ralima 7002 . . . 4 ((𝐹 Fn 𝐵 ∧ dom (𝐹 ↾ (𝐶[,)+∞)) ⊆ 𝐵) → (∀𝑥 ∈ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥𝐴 ↔ ∀𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞))(𝐹𝑗) ≤ 𝐴))
2818, 25, 27syl2anc 586 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑥 ∈ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥𝐴 ↔ ∀𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞))(𝐹𝑗) ≤ 𝐴))
2923eleq2d 2900 . . . . . . . 8 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ 𝑗 ∈ (𝐵 ∩ (𝐶[,)+∞))))
30 elin 4171 . . . . . . . 8 (𝑗 ∈ (𝐵 ∩ (𝐶[,)+∞)) ↔ (𝑗𝐵𝑗 ∈ (𝐶[,)+∞)))
3129, 30syl6bb 289 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ (𝑗𝐵𝑗 ∈ (𝐶[,)+∞))))
32 simpl2 1188 . . . . . . . . 9 ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) ∧ 𝑗𝐵) → 𝐶 ∈ ℝ)
33 simp1l 1193 . . . . . . . . . 10 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐵 ⊆ ℝ)
3433sselda 3969 . . . . . . . . 9 ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) ∧ 𝑗𝐵) → 𝑗 ∈ ℝ)
35 elicopnf 12836 . . . . . . . . . 10 (𝐶 ∈ ℝ → (𝑗 ∈ (𝐶[,)+∞) ↔ (𝑗 ∈ ℝ ∧ 𝐶𝑗)))
3635baibd 542 . . . . . . . . 9 ((𝐶 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑗 ∈ (𝐶[,)+∞) ↔ 𝐶𝑗))
3732, 34, 36syl2anc 586 . . . . . . . 8 ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) ∧ 𝑗𝐵) → (𝑗 ∈ (𝐶[,)+∞) ↔ 𝐶𝑗))
3837pm5.32da 581 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝑗𝐵𝑗 ∈ (𝐶[,)+∞)) ↔ (𝑗𝐵𝐶𝑗)))
3931, 38bitrd 281 . . . . . 6 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ (𝑗𝐵𝐶𝑗)))
4039imbi1d 344 . . . . 5 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) → (𝐹𝑗) ≤ 𝐴) ↔ ((𝑗𝐵𝐶𝑗) → (𝐹𝑗) ≤ 𝐴)))
41 impexp 453 . . . . 5 (((𝑗𝐵𝐶𝑗) → (𝐹𝑗) ≤ 𝐴) ↔ (𝑗𝐵 → (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
4240, 41syl6bb 289 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) → (𝐹𝑗) ≤ 𝐴) ↔ (𝑗𝐵 → (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴))))
4342ralbidv2 3197 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞))(𝐹𝑗) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
4417, 28, 433bitrd 307 . 2 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
454, 8, 443bitrd 307 1 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐺𝐶) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  cin 3937  wss 3938   class class class wbr 5068  cmpt 5148  dom cdm 5557  ran crn 5558  cres 5559  cima 5560   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  supcsup 8906  cr 10538  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678  [,)cico 12743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-ico 12747
This theorem is referenced by:  limsupgre  14840  limsupbnd1  14841  limsupbnd2  14842  mbflimsup  24269
  Copyright terms: Public domain W3C validator