MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgord Structured version   Visualization version   GIF version

Theorem limsupgord 14137
Description: Ordering property of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.)
Assertion
Ref Expression
limsupgord ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → sup(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))

Proof of Theorem limsupgord
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexr 10029 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
213ad2ant1 1080 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ∈ ℝ*)
3 simp3 1061 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴𝐵)
4 df-ico 12123 . . . . . 6 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
5 xrletr 11933 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝐵𝐵𝑤) → 𝐴𝑤))
64, 4, 5ixxss1 12135 . . . . 5 ((𝐴 ∈ ℝ*𝐴𝐵) → (𝐵[,)+∞) ⊆ (𝐴[,)+∞))
72, 3, 6syl2anc 692 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐵[,)+∞) ⊆ (𝐴[,)+∞))
8 imass2 5460 . . . 4 ((𝐵[,)+∞) ⊆ (𝐴[,)+∞) → (𝐹 “ (𝐵[,)+∞)) ⊆ (𝐹 “ (𝐴[,)+∞)))
9 ssrin 3816 . . . 4 ((𝐹 “ (𝐵[,)+∞)) ⊆ (𝐹 “ (𝐴[,)+∞)) → ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*))
107, 8, 93syl 18 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*))
11 inss2 3812 . . . . . 6 ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ*
12 supxrcl 12088 . . . . . 6 (((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
1311, 12ax-mp 5 . . . . 5 sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
14 xrleid 11927 . . . . 5 (sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ* → sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
1513, 14ax-mp 5 . . . 4 sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )
16 supxrleub 12099 . . . . 5 ((((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ* ∧ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) → (sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )))
1711, 13, 16mp2an 707 . . . 4 (sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
1815, 17mpbi 220 . . 3 𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )
19 ssralv 3645 . . 3 (((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) → (∀𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) → ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )))
2010, 18, 19mpisyl 21 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
21 inss2 3812 . . 3 ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ℝ*
22 supxrleub 12099 . . 3 ((((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ℝ* ∧ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) → (sup(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )))
2321, 13, 22mp2an 707 . 2 (sup(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
2420, 23sylibr 224 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → sup(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1036  wcel 1987  wral 2907  cin 3554  wss 3555   class class class wbr 4613  cima 5077  (class class class)co 6604  supcsup 8290  cr 9879  +∞cpnf 10015  *cxr 10017   < clt 10018  cle 10019  [,)cico 12119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-ico 12123
This theorem is referenced by:  limsupval2  14145
  Copyright terms: Public domain W3C validator