MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgre Structured version   Visualization version   GIF version

Theorem limsupgre 14153
Description: If a sequence of real numbers has upper bounded limit supremum, then all the partial suprema are real. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
limsupval.1 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
limsupgre.z 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
limsupgre ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) → 𝐺:ℝ⟶ℝ)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝐺(𝑘)

Proof of Theorem limsupgre
Dummy variables 𝑎 𝑖 𝑚 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 11925 . . . 4 < Or ℝ*
21supex 8320 . . 3 sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
32a1i 11 . 2 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V)
4 limsupval.1 . . 3 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
54a1i 11 . 2 ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) → 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
64limsupgval 14148 . . . 4 (𝑎 ∈ ℝ → (𝐺𝑎) = sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ))
76adantl 482 . . 3 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐺𝑎) = sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ))
8 simpl3 1064 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (lim sup‘𝐹) < +∞)
9 limsupgre.z . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
10 uzssz 11658 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℤ
119, 10eqsstri 3619 . . . . . . . . . 10 𝑍 ⊆ ℤ
12 zssre 11335 . . . . . . . . . 10 ℤ ⊆ ℝ
1311, 12sstri 3596 . . . . . . . . 9 𝑍 ⊆ ℝ
1413a1i 11 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑍 ⊆ ℝ)
15 simpl2 1063 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝐹:𝑍⟶ℝ)
16 ressxr 10034 . . . . . . . . 9 ℝ ⊆ ℝ*
17 fss 6018 . . . . . . . . 9 ((𝐹:𝑍⟶ℝ ∧ ℝ ⊆ ℝ*) → 𝐹:𝑍⟶ℝ*)
1815, 16, 17sylancl 693 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
19 pnfxr 10043 . . . . . . . . 9 +∞ ∈ ℝ*
2019a1i 11 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → +∞ ∈ ℝ*)
214limsuplt 14151 . . . . . . . 8 ((𝑍 ⊆ ℝ ∧ 𝐹:𝑍⟶ℝ* ∧ +∞ ∈ ℝ*) → ((lim sup‘𝐹) < +∞ ↔ ∃𝑛 ∈ ℝ (𝐺𝑛) < +∞))
2214, 18, 20, 21syl3anc 1323 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((lim sup‘𝐹) < +∞ ↔ ∃𝑛 ∈ ℝ (𝐺𝑛) < +∞))
238, 22mpbid 222 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ∃𝑛 ∈ ℝ (𝐺𝑛) < +∞)
24 fzfi 12718 . . . . . . . 8 (𝑀...(⌊‘𝑛)) ∈ Fin
2515adantr 481 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → 𝐹:𝑍⟶ℝ)
26 elfzuz 12287 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...(⌊‘𝑛)) → 𝑚 ∈ (ℤ𝑀))
2726, 9syl6eleqr 2709 . . . . . . . . . 10 (𝑚 ∈ (𝑀...(⌊‘𝑛)) → 𝑚𝑍)
28 ffvelrn 6318 . . . . . . . . . 10 ((𝐹:𝑍⟶ℝ ∧ 𝑚𝑍) → (𝐹𝑚) ∈ ℝ)
2925, 27, 28syl2an 494 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ 𝑚 ∈ (𝑀...(⌊‘𝑛))) → (𝐹𝑚) ∈ ℝ)
3029ralrimiva 2961 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ∈ ℝ)
31 fimaxre3 10921 . . . . . . . 8 (((𝑀...(⌊‘𝑛)) ∈ Fin ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)
3224, 30, 31sylancr 694 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → ∃𝑟 ∈ ℝ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)
33 simpr 477 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
3433ad2antrr 761 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑎 ∈ ℝ)
354limsupgf 14147 . . . . . . . . . 10 𝐺:ℝ⟶ℝ*
3635ffvelrni 6319 . . . . . . . . 9 (𝑎 ∈ ℝ → (𝐺𝑎) ∈ ℝ*)
3734, 36syl 17 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑎) ∈ ℝ*)
38 simprl 793 . . . . . . . . . 10 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑟 ∈ ℝ)
3916, 38sseldi 3585 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑟 ∈ ℝ*)
40 simprl 793 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → 𝑛 ∈ ℝ)
4140adantr 481 . . . . . . . . . 10 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑛 ∈ ℝ)
4235ffvelrni 6319 . . . . . . . . . 10 (𝑛 ∈ ℝ → (𝐺𝑛) ∈ ℝ*)
4341, 42syl 17 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑛) ∈ ℝ*)
4439, 43ifcld 4108 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*)
4519a1i 11 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → +∞ ∈ ℝ*)
4640ad2antrr 761 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑛 ∈ ℝ)
4713a1i 11 . . . . . . . . . . . . 13 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑍 ⊆ ℝ)
4847sselda 3587 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑖 ∈ ℝ)
49 xrleid 11934 . . . . . . . . . . . . . . . . 17 ((𝐺𝑛) ∈ ℝ* → (𝐺𝑛) ≤ (𝐺𝑛))
5043, 49syl 17 . . . . . . . . . . . . . . . 16 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑛) ≤ (𝐺𝑛))
5118ad2antrr 761 . . . . . . . . . . . . . . . . 17 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝐹:𝑍⟶ℝ*)
524limsupgle 14149 . . . . . . . . . . . . . . . . 17 (((𝑍 ⊆ ℝ ∧ 𝐹:𝑍⟶ℝ*) ∧ 𝑛 ∈ ℝ ∧ (𝐺𝑛) ∈ ℝ*) → ((𝐺𝑛) ≤ (𝐺𝑛) ↔ ∀𝑖𝑍 (𝑛𝑖 → (𝐹𝑖) ≤ (𝐺𝑛))))
5347, 51, 41, 43, 52syl211anc 1329 . . . . . . . . . . . . . . . 16 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ((𝐺𝑛) ≤ (𝐺𝑛) ↔ ∀𝑖𝑍 (𝑛𝑖 → (𝐹𝑖) ≤ (𝐺𝑛))))
5450, 53mpbid 222 . . . . . . . . . . . . . . 15 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ∀𝑖𝑍 (𝑛𝑖 → (𝐹𝑖) ≤ (𝐺𝑛)))
5554r19.21bi 2927 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑛𝑖 → (𝐹𝑖) ≤ (𝐺𝑛)))
5655imp 445 . . . . . . . . . . . . 13 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑛𝑖) → (𝐹𝑖) ≤ (𝐺𝑛))
5746, 42syl 17 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝐺𝑛) ∈ ℝ*)
5839adantr 481 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑟 ∈ ℝ*)
59 xrmax1 11956 . . . . . . . . . . . . . . . 16 (((𝐺𝑛) ∈ ℝ*𝑟 ∈ ℝ*) → (𝐺𝑛) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
6057, 58, 59syl2anc 692 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝐺𝑛) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
6151ffvelrnda 6320 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝐹𝑖) ∈ ℝ*)
6244adantr 481 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*)
63 xrletr 11940 . . . . . . . . . . . . . . . 16 (((𝐹𝑖) ∈ ℝ* ∧ (𝐺𝑛) ∈ ℝ* ∧ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*) → (((𝐹𝑖) ≤ (𝐺𝑛) ∧ (𝐺𝑛) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
6461, 57, 62, 63syl3anc 1323 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (((𝐹𝑖) ≤ (𝐺𝑛) ∧ (𝐺𝑛) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
6560, 64mpan2d 709 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → ((𝐹𝑖) ≤ (𝐺𝑛) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
6665adantr 481 . . . . . . . . . . . . 13 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑛𝑖) → ((𝐹𝑖) ≤ (𝐺𝑛) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
6756, 66mpd 15 . . . . . . . . . . . 12 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑛𝑖) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
68 simpr 477 . . . . . . . . . . . . . . . . . 18 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑖𝑍)
6968, 9syl6eleq 2708 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
7041flcld 12546 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (⌊‘𝑛) ∈ ℤ)
7170adantr 481 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (⌊‘𝑛) ∈ ℤ)
72 elfz5 12283 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (ℤ𝑀) ∧ (⌊‘𝑛) ∈ ℤ) → (𝑖 ∈ (𝑀...(⌊‘𝑛)) ↔ 𝑖 ≤ (⌊‘𝑛)))
7369, 71, 72syl2anc 692 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑖 ∈ (𝑀...(⌊‘𝑛)) ↔ 𝑖 ≤ (⌊‘𝑛)))
7411, 68sseldi 3585 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑖 ∈ ℤ)
75 flge 12553 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℝ ∧ 𝑖 ∈ ℤ) → (𝑖𝑛𝑖 ≤ (⌊‘𝑛)))
7646, 74, 75syl2anc 692 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑖𝑛𝑖 ≤ (⌊‘𝑛)))
7773, 76bitr4d 271 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑖 ∈ (𝑀...(⌊‘𝑛)) ↔ 𝑖𝑛))
7877biimpar 502 . . . . . . . . . . . . . 14 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → 𝑖 ∈ (𝑀...(⌊‘𝑛)))
79 simprr 795 . . . . . . . . . . . . . . 15 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)
8079ad2antrr 761 . . . . . . . . . . . . . 14 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)
81 fveq2 6153 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑖 → (𝐹𝑚) = (𝐹𝑖))
8281breq1d 4628 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → ((𝐹𝑚) ≤ 𝑟 ↔ (𝐹𝑖) ≤ 𝑟))
8382rspcv 3294 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝑀...(⌊‘𝑛)) → (∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟 → (𝐹𝑖) ≤ 𝑟))
8478, 80, 83sylc 65 . . . . . . . . . . . . 13 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → (𝐹𝑖) ≤ 𝑟)
85 xrmax2 11957 . . . . . . . . . . . . . . . . 17 (((𝐺𝑛) ∈ ℝ*𝑟 ∈ ℝ*) → 𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
8643, 39, 85syl2anc 692 . . . . . . . . . . . . . . . 16 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
8786adantr 481 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
88 xrletr 11940 . . . . . . . . . . . . . . . 16 (((𝐹𝑖) ∈ ℝ*𝑟 ∈ ℝ* ∧ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*) → (((𝐹𝑖) ≤ 𝑟𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
8961, 58, 62, 88syl3anc 1323 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (((𝐹𝑖) ≤ 𝑟𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
9087, 89mpan2d 709 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → ((𝐹𝑖) ≤ 𝑟 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
9190adantr 481 . . . . . . . . . . . . 13 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → ((𝐹𝑖) ≤ 𝑟 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
9284, 91mpd 15 . . . . . . . . . . . 12 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
9346, 48, 67, 92lecasei 10094 . . . . . . . . . . 11 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
9493a1d 25 . . . . . . . . . 10 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑎𝑖 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
9594ralrimiva 2961 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ∀𝑖𝑍 (𝑎𝑖 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
964limsupgle 14149 . . . . . . . . . 10 (((𝑍 ⊆ ℝ ∧ 𝐹:𝑍⟶ℝ*) ∧ 𝑎 ∈ ℝ ∧ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*) → ((𝐺𝑎) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ↔ ∀𝑖𝑍 (𝑎𝑖 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))))
9747, 51, 34, 44, 96syl211anc 1329 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ((𝐺𝑎) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ↔ ∀𝑖𝑍 (𝑎𝑖 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))))
9895, 97mpbird 247 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑎) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
9938ltpnfd 11906 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑟 < +∞)
100 simplrr 800 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑛) < +∞)
101 breq1 4621 . . . . . . . . . 10 (𝑟 = if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) → (𝑟 < +∞ ↔ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) < +∞))
102 breq1 4621 . . . . . . . . . 10 ((𝐺𝑛) = if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) → ((𝐺𝑛) < +∞ ↔ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) < +∞))
103101, 102ifboth 4101 . . . . . . . . 9 ((𝑟 < +∞ ∧ (𝐺𝑛) < +∞) → if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) < +∞)
10499, 100, 103syl2anc 692 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) < +∞)
10537, 44, 45, 98, 104xrlelttrd 11942 . . . . . . 7 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑎) < +∞)
10632, 105rexlimddv 3029 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → (𝐺𝑎) < +∞)
10723, 106rexlimddv 3029 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐺𝑎) < +∞)
1087, 107eqbrtrrd 4642 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) < +∞)
109 imassrn 5441 . . . . . . . . 9 (𝐹 “ (𝑎[,)+∞)) ⊆ ran 𝐹
110 frn 6015 . . . . . . . . . 10 (𝐹:𝑍⟶ℝ → ran 𝐹 ⊆ ℝ)
11115, 110syl 17 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ran 𝐹 ⊆ ℝ)
112109, 111syl5ss 3598 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (𝑎[,)+∞)) ⊆ ℝ)
113112, 16syl6ss 3599 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (𝑎[,)+∞)) ⊆ ℝ*)
114 df-ss 3573 . . . . . . 7 ((𝐹 “ (𝑎[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑎[,)+∞)))
115113, 114sylib 208 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑎[,)+∞)))
116115, 112eqsstrd 3623 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) ⊆ ℝ)
117 simpl1 1062 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑀 ∈ ℤ)
118 flcl 12543 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ → (⌊‘𝑎) ∈ ℤ)
119118adantl 482 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (⌊‘𝑎) ∈ ℤ)
120119peano2zd 11436 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((⌊‘𝑎) + 1) ∈ ℤ)
121120, 117ifcld 4108 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℤ)
122117zred 11433 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑀 ∈ ℝ)
123120zred 11433 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((⌊‘𝑎) + 1) ∈ ℝ)
124 max1 11966 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑎) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
125122, 123, 124syl2anc 692 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
126 eluz2 11644 . . . . . . . . . . 11 (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀)))
127117, 121, 125, 126syl3anbrc 1244 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (ℤ𝑀))
128127, 9syl6eleqr 2709 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ 𝑍)
129 fdm 6013 . . . . . . . . . 10 (𝐹:𝑍⟶ℝ → dom 𝐹 = 𝑍)
13015, 129syl 17 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → dom 𝐹 = 𝑍)
131128, 130eleqtrrd 2701 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ dom 𝐹)
132121zred 11433 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℝ)
133 fllep1 12549 . . . . . . . . . . 11 (𝑎 ∈ ℝ → 𝑎 ≤ ((⌊‘𝑎) + 1))
134133adantl 482 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑎 ≤ ((⌊‘𝑎) + 1))
135 max2 11968 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑎) + 1) ∈ ℝ) → ((⌊‘𝑎) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
136122, 123, 135syl2anc 692 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((⌊‘𝑎) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
13733, 123, 132, 134, 136letrd 10145 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑎 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
138 elicopnf 12218 . . . . . . . . . 10 (𝑎 ∈ ℝ → (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (𝑎[,)+∞) ↔ (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℝ ∧ 𝑎 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))))
139138adantl 482 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (𝑎[,)+∞) ↔ (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℝ ∧ 𝑎 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))))
140132, 137, 139mpbir2and 956 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (𝑎[,)+∞))
141 inelcm 4009 . . . . . . . 8 ((if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ dom 𝐹 ∧ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (𝑎[,)+∞)) → (dom 𝐹 ∩ (𝑎[,)+∞)) ≠ ∅)
142131, 140, 141syl2anc 692 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (dom 𝐹 ∩ (𝑎[,)+∞)) ≠ ∅)
143 imadisj 5448 . . . . . . . 8 ((𝐹 “ (𝑎[,)+∞)) = ∅ ↔ (dom 𝐹 ∩ (𝑎[,)+∞)) = ∅)
144143necon3bii 2842 . . . . . . 7 ((𝐹 “ (𝑎[,)+∞)) ≠ ∅ ↔ (dom 𝐹 ∩ (𝑎[,)+∞)) ≠ ∅)
145142, 144sylibr 224 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (𝑎[,)+∞)) ≠ ∅)
146115, 145eqnetrd 2857 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) ≠ ∅)
147 supxrre1 12110 . . . . 5 ((((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) ⊆ ℝ ∧ ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) ≠ ∅) → (sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ ↔ sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) < +∞))
148116, 146, 147syl2anc 692 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ ↔ sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) < +∞))
149108, 148mpbird 247 . . 3 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ)
1507, 149eqeltrd 2698 . 2 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐺𝑎) ∈ ℝ)
1513, 5, 150fmpt2d 6354 1 ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) → 𝐺:ℝ⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  Vcvv 3189  cin 3558  wss 3559  c0 3896  ifcif 4063   class class class wbr 4618  cmpt 4678  dom cdm 5079  ran crn 5080  cima 5082  wf 5848  cfv 5852  (class class class)co 6610  Fincfn 7906  supcsup 8297  cr 9886  1c1 9888   + caddc 9890  +∞cpnf 10022  *cxr 10024   < clt 10025  cle 10026  cz 11328  cuz 11638  [,)cico 12126  ...cfz 12275  cfl 12538  lim supclsp 14142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-inf 8300  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-nn 10972  df-n0 11244  df-z 11329  df-uz 11639  df-ico 12130  df-fz 12276  df-fl 12540  df-limsup 14143
This theorem is referenced by:  mbflimsup  23352
  Copyright terms: Public domain W3C validator