Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupmnfuzlem Structured version   Visualization version   GIF version

Theorem limsupmnfuzlem 42013
Description: The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupmnfuzlem.1 (𝜑𝑀 ∈ ℤ)
limsupmnfuzlem.2 𝑍 = (ℤ𝑀)
limsupmnfuzlem.3 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
limsupmnfuzlem (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀,𝑘   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hint:   𝑀(𝑥)

Proof of Theorem limsupmnfuzlem
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2980 . . 3 𝑗𝐹
2 limsupmnfuzlem.2 . . . . 5 𝑍 = (ℤ𝑀)
3 uzssre 41675 . . . . 5 (ℤ𝑀) ⊆ ℝ
42, 3eqsstri 4004 . . . 4 𝑍 ⊆ ℝ
54a1i 11 . . 3 (𝜑𝑍 ⊆ ℝ)
6 limsupmnfuzlem.3 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
71, 5, 6limsupmnf 42008 . 2 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
8 breq1 5072 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
98imbi1d 344 . . . . . . . . 9 (𝑘 = 𝑖 → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)))
109ralbidv 3200 . . . . . . . 8 (𝑘 = 𝑖 → (∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)))
1110cbvrexvw 3453 . . . . . . 7 (∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑖 ∈ ℝ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
1211biimpi 218 . . . . . 6 (∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑖 ∈ ℝ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
13 iftrue 4476 . . . . . . . . . . . . . 14 (𝑀 ≤ (⌈‘𝑖) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) = (⌈‘𝑖))
1413adantl 484 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) = (⌈‘𝑖))
15 limsupmnfuzlem.1 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℤ)
1615ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → 𝑀 ∈ ℤ)
17 ceilcl 13215 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℝ → (⌈‘𝑖) ∈ ℤ)
1817ad2antlr 725 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → (⌈‘𝑖) ∈ ℤ)
19 simpr 487 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → 𝑀 ≤ (⌈‘𝑖))
202, 16, 18, 19eluzd 41688 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → (⌈‘𝑖) ∈ 𝑍)
2114, 20eqeltrd 2916 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑖)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍)
22 iffalse 4479 . . . . . . . . . . . . . 14 𝑀 ≤ (⌈‘𝑖) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) = 𝑀)
2322adantl 484 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ) ∧ ¬ 𝑀 ≤ (⌈‘𝑖)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) = 𝑀)
2415, 2uzidd2 41696 . . . . . . . . . . . . . 14 (𝜑𝑀𝑍)
2524ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ) ∧ ¬ 𝑀 ≤ (⌈‘𝑖)) → 𝑀𝑍)
2623, 25eqeltrd 2916 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℝ) ∧ ¬ 𝑀 ≤ (⌈‘𝑖)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍)
2721, 26pm2.61dan 811 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℝ) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍)
28273adant3 1128 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍)
29 nfv 1914 . . . . . . . . . . . 12 𝑗𝜑
30 nfv 1914 . . . . . . . . . . . 12 𝑗 𝑖 ∈ ℝ
31 nfra1 3222 . . . . . . . . . . . 12 𝑗𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)
3229, 30, 31nf3an 1901 . . . . . . . . . . 11 𝑗(𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
33 simplr 767 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑖 ∈ ℝ)
344, 27sseldi 3968 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℝ) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ ℝ)
3534adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ ℝ)
36 eluzelre 12257 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)) → 𝑗 ∈ ℝ)
3736adantl 484 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑗 ∈ ℝ)
38 simpr 487 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ℝ) → 𝑖 ∈ ℝ)
3917zred 12090 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℝ → (⌈‘𝑖) ∈ ℝ)
4039adantl 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ℝ) → (⌈‘𝑖) ∈ ℝ)
41 ceilge 13217 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℝ → 𝑖 ≤ (⌈‘𝑖))
4241adantl 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ℝ) → 𝑖 ≤ (⌈‘𝑖))
434, 24sseldi 3968 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℝ)
4443adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ ℝ) → 𝑀 ∈ ℝ)
45 max2 12583 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ (⌈‘𝑖) ∈ ℝ) → (⌈‘𝑖) ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
4644, 40, 45syl2anc 586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ ℝ) → (⌈‘𝑖) ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
4738, 40, 34, 42, 46letrd 10800 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℝ) → 𝑖 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
4847adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑖 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
49 eluzle 12259 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ≤ 𝑗)
5049adantl 484 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ≤ 𝑗)
5133, 35, 37, 48, 50letrd 10800 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑖𝑗)
52513adantl3 1164 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑖𝑗)
53 simpl3 1189 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
5415ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑀 ∈ ℤ)
55 eluzelz 12256 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)) → 𝑗 ∈ ℤ)
5655adantl 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑗 ∈ ℤ)
5744adantr 483 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑀 ∈ ℝ)
58 max1 12581 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℝ ∧ (⌈‘𝑖) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
5943, 39, 58syl2an 597 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
6059adantr 483 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))
6157, 35, 37, 60, 50letrd 10800 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑀𝑗)
622, 54, 56, 61eluzd 41688 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑗𝑍)
63623adantl3 1164 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → 𝑗𝑍)
64 rspa 3209 . . . . . . . . . . . . . 14 ((∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍) → (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
6553, 63, 64syl2anc 586 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥))
6652, 65mpd 15 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))) → (𝐹𝑗) ≤ 𝑥)
6766ex 415 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)) → (𝐹𝑗) ≤ 𝑥))
6832, 67ralrimi 3219 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∀𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))(𝐹𝑗) ≤ 𝑥)
69 fveq2 6673 . . . . . . . . . . . 12 (𝑘 = if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) → (ℤ𝑘) = (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀)))
7069raleqdv 3418 . . . . . . . . . . 11 (𝑘 = if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) → (∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))(𝐹𝑗) ≤ 𝑥))
7170rspcev 3626 . . . . . . . . . 10 ((if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀) ∈ 𝑍 ∧ ∀𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑖), (⌈‘𝑖), 𝑀))(𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
7228, 68, 71syl2anc 586 . . . . . . . . 9 ((𝜑𝑖 ∈ ℝ ∧ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
73723exp 1115 . . . . . . . 8 (𝜑 → (𝑖 ∈ ℝ → (∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
7473rexlimdv 3286 . . . . . . 7 (𝜑 → (∃𝑖 ∈ ℝ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
7574imp 409 . . . . . 6 ((𝜑 ∧ ∃𝑖 ∈ ℝ ∀𝑗𝑍 (𝑖𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
7612, 75sylan2 594 . . . . 5 ((𝜑 ∧ ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
7776ex 415 . . . 4 (𝜑 → (∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
78 rexss 4041 . . . . . . . 8 (𝑍 ⊆ ℝ → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
794, 78ax-mp 5 . . . . . . 7 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
8079biimpi 218 . . . . . 6 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 → ∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
81 nfv 1914 . . . . . . . . . . 11 𝑗 𝑘𝑍
82 nfra1 3222 . . . . . . . . . . 11 𝑗𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥
8381, 82nfan 1899 . . . . . . . . . 10 𝑗(𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
84 simp1r 1194 . . . . . . . . . . . 12 (((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍𝑘𝑗) → ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
85 eqid 2824 . . . . . . . . . . . . . 14 (ℤ𝑘) = (ℤ𝑘)
862eluzelz2 41682 . . . . . . . . . . . . . . 15 (𝑘𝑍𝑘 ∈ ℤ)
87863ad2ant1 1129 . . . . . . . . . . . . . 14 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑘 ∈ ℤ)
882eluzelz2 41682 . . . . . . . . . . . . . . 15 (𝑗𝑍𝑗 ∈ ℤ)
89883ad2ant2 1130 . . . . . . . . . . . . . 14 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑗 ∈ ℤ)
90 simp3 1134 . . . . . . . . . . . . . 14 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑘𝑗)
9185, 87, 89, 90eluzd 41688 . . . . . . . . . . . . 13 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑗 ∈ (ℤ𝑘))
92913adant1r 1173 . . . . . . . . . . . 12 (((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍𝑘𝑗) → 𝑗 ∈ (ℤ𝑘))
93 rspa 3209 . . . . . . . . . . . 12 ((∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥𝑗 ∈ (ℤ𝑘)) → (𝐹𝑗) ≤ 𝑥)
9484, 92, 93syl2anc 586 . . . . . . . . . . 11 (((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
95943exp 1115 . . . . . . . . . 10 ((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → (𝑗𝑍 → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9683, 95ralrimi 3219 . . . . . . . . 9 ((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
9796a1i 11 . . . . . . . 8 (𝜑 → ((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9897reximdv 3276 . . . . . . 7 (𝜑 → (∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9998imp 409 . . . . . 6 ((𝜑 ∧ ∃𝑘 ∈ ℝ (𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
10080, 99sylan2 594 . . . . 5 ((𝜑 ∧ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
101100ex 415 . . . 4 (𝜑 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 → ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
10277, 101impbid 214 . . 3 (𝜑 → (∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
103102ralbidv 3200 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
1047, 103bitrd 281 1 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142  wss 3939  ifcif 4470   class class class wbr 5069  wf 6354  cfv 6358  cr 10539  -∞cmnf 10676  *cxr 10677  cle 10679  cz 11984  cuz 12246  cceil 13164  lim supclsp 14830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-ico 12747  df-fl 13165  df-ceil 13166  df-limsup 14831
This theorem is referenced by:  limsupmnfuz  42014
  Copyright terms: Public domain W3C validator