![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsuppnf | Structured version Visualization version GIF version |
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsuppnf.j | ⊢ Ⅎ𝑗𝐹 |
limsuppnf.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
limsuppnf.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
Ref | Expression |
---|---|
limsuppnf | ⊢ (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2793 | . . 3 ⊢ Ⅎ𝑙𝐹 | |
2 | limsuppnf.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
3 | limsuppnf.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
4 | 1, 2, 3 | limsuppnflem 40260 | . 2 ⊢ (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
5 | breq1 4688 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑘 → (𝑖 ≤ 𝑙 ↔ 𝑘 ≤ 𝑙)) | |
6 | 5 | anbi1d 741 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → ((𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ (𝑘 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
7 | 6 | rexbidv 3081 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∃𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
8 | nfv 1883 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗 𝑘 ≤ 𝑙 | |
9 | nfcv 2793 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗𝑦 | |
10 | nfcv 2793 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗 ≤ | |
11 | limsuppnf.j | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝐹 | |
12 | nfcv 2793 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝑙 | |
13 | 11, 12 | nffv 6236 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
14 | 9, 10, 13 | nfbr 4732 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗 𝑦 ≤ (𝐹‘𝑙) |
15 | 8, 14 | nfan 1868 | . . . . . . . . . 10 ⊢ Ⅎ𝑗(𝑘 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) |
16 | nfv 1883 | . . . . . . . . . 10 ⊢ Ⅎ𝑙(𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) | |
17 | breq2 4689 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝑗 → (𝑘 ≤ 𝑙 ↔ 𝑘 ≤ 𝑗)) | |
18 | fveq2 6229 | . . . . . . . . . . . 12 ⊢ (𝑙 = 𝑗 → (𝐹‘𝑙) = (𝐹‘𝑗)) | |
19 | 18 | breq2d 4697 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝑗 → (𝑦 ≤ (𝐹‘𝑙) ↔ 𝑦 ≤ (𝐹‘𝑗))) |
20 | 17, 19 | anbi12d 747 | . . . . . . . . . 10 ⊢ (𝑙 = 𝑗 → ((𝑘 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
21 | 15, 16, 20 | cbvrex 3198 | . . . . . . . . 9 ⊢ (∃𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗))) |
22 | 21 | a1i 11 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
23 | 7, 22 | bitrd 268 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
24 | 23 | cbvralv 3201 | . . . . . 6 ⊢ (∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗))) |
25 | 24 | a1i 11 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
26 | breq1 4688 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑦 ≤ (𝐹‘𝑗) ↔ 𝑥 ≤ (𝐹‘𝑗))) | |
27 | 26 | anbi2d 740 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
28 | 27 | rexbidv 3081 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
29 | 28 | ralbidv 3015 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
30 | 25, 29 | bitrd 268 | . . . 4 ⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
31 | 30 | cbvralv 3201 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
32 | 31 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
33 | 4, 32 | bitrd 268 | 1 ⊢ (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 Ⅎwnfc 2780 ∀wral 2941 ∃wrex 2942 ⊆ wss 3607 class class class wbr 4685 ⟶wf 5922 ‘cfv 5926 ℝcr 9973 +∞cpnf 10109 ℝ*cxr 10111 ≤ cle 10113 lim supclsp 14245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-inf 8390 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-ico 12219 df-limsup 14246 |
This theorem is referenced by: limsupre2lem 40274 |
Copyright terms: Public domain | W3C validator |