Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuppnflem Structured version   Visualization version   GIF version

Theorem limsuppnflem 41867
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsuppnflem.j 𝑗𝐹
limsuppnflem.a (𝜑𝐴 ⊆ ℝ)
limsuppnflem.f (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsuppnflem (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hint:   𝐹(𝑗)

Proof of Theorem limsuppnflem
StepHypRef Expression
1 id 22 . . . . . . 7 (𝜑𝜑)
2 imnan 400 . . . . . . . . . . . . . 14 ((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
32ralbii 3162 . . . . . . . . . . . . 13 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑗𝐴 ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4 ralnex 3233 . . . . . . . . . . . . 13 (∀𝑗𝐴 ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
53, 4bitri 276 . . . . . . . . . . . 12 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
65rexbii 3244 . . . . . . . . . . 11 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
7 rexnal 3235 . . . . . . . . . . 11 (∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
86, 7bitri 276 . . . . . . . . . 10 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
98rexbii 3244 . . . . . . . . 9 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
10 rexnal 3235 . . . . . . . . 9 (∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
119, 10bitri 276 . . . . . . . 8 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
1211biimpri 229 . . . . . . 7 (¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)))
13 simp1 1128 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑗) → (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴))
14 id 22 . . . . . . . . . . . . . . 15 ((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)))
1514imp 407 . . . . . . . . . . . . . 14 (((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑗) → ¬ 𝑥 ≤ (𝐹𝑗))
16153adant1 1122 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑗) → ¬ 𝑥 ≤ (𝐹𝑗))
17 limsuppnflem.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐴⟶ℝ*)
1817ffvelrnda 6843 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
1918ad4ant14 748 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
2019adantr 481 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
21 simpllr 772 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ)
22 rexr 10675 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
2321, 22syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ*)
2423adantr 481 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ*)
25 simpr 485 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → ¬ 𝑥 ≤ (𝐹𝑗))
2618ad4ant13 747 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
2722ad3antlr 727 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ*)
2826, 27xrltnled 41507 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → ((𝐹𝑗) < 𝑥 ↔ ¬ 𝑥 ≤ (𝐹𝑗)))
2925, 28mpbird 258 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) < 𝑥)
3029adantllr 715 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) < 𝑥)
3120, 24, 30xrltled 12531 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ≤ 𝑥)
3213, 16, 31syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
33323exp 1111 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
3433ralimdva 3174 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
3534reximdva 3271 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
3635reximdva 3271 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
3736imp 407 . . . . . . 7 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
381, 12, 37syl2an 595 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
39 reex 10616 . . . . . . . . . . . . . 14 ℝ ∈ V
4039a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
41 limsuppnflem.a . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ℝ)
4240, 41ssexd 5219 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
4317, 42fexd 41256 . . . . . . . . . . 11 (𝜑𝐹 ∈ V)
4443limsupcld 41847 . . . . . . . . . 10 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
4544ad2antrr 722 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (lim sup‘𝐹) ∈ ℝ*)
4622ad2antlr 723 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → 𝑥 ∈ ℝ*)
47 pnfxr 10683 . . . . . . . . . 10 +∞ ∈ ℝ*
4847a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → +∞ ∈ ℝ*)
49 limsuppnflem.j . . . . . . . . . 10 𝑗𝐹
5041ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → 𝐴 ⊆ ℝ)
5117ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → 𝐹:𝐴⟶ℝ*)
52 simpr 485 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
5349, 50, 51, 46, 52limsupbnd1f 41843 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (lim sup‘𝐹) ≤ 𝑥)
54 ltpnf 12503 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 < +∞)
5554ad2antlr 723 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → 𝑥 < +∞)
5645, 46, 48, 53, 55xrlelttrd 12541 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (lim sup‘𝐹) < +∞)
5756rexlimdva2 3284 . . . . . . 7 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → (lim sup‘𝐹) < +∞))
5857imp 407 . . . . . 6 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (lim sup‘𝐹) < +∞)
5938, 58syldan 591 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (lim sup‘𝐹) < +∞)
6059adantlr 711 . . . 4 (((𝜑 ∧ (lim sup‘𝐹) = +∞) ∧ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (lim sup‘𝐹) < +∞)
61 id 22 . . . . . . . 8 ((lim sup‘𝐹) = +∞ → (lim sup‘𝐹) = +∞)
6247a1i 11 . . . . . . . 8 ((lim sup‘𝐹) = +∞ → +∞ ∈ ℝ*)
6361, 62eqeltrd 2910 . . . . . . 7 ((lim sup‘𝐹) = +∞ → (lim sup‘𝐹) ∈ ℝ*)
6463, 61xreqnltd 41543 . . . . . 6 ((lim sup‘𝐹) = +∞ → ¬ (lim sup‘𝐹) < +∞)
6564adantl 482 . . . . 5 ((𝜑 ∧ (lim sup‘𝐹) = +∞) → ¬ (lim sup‘𝐹) < +∞)
6665adantr 481 . . . 4 (((𝜑 ∧ (lim sup‘𝐹) = +∞) ∧ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ¬ (lim sup‘𝐹) < +∞)
6760, 66condan 814 . . 3 ((𝜑 ∧ (lim sup‘𝐹) = +∞) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
6867ex 413 . 2 (𝜑 → ((lim sup‘𝐹) = +∞ → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
6941adantr 481 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝐴 ⊆ ℝ)
7017adantr 481 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝐹:𝐴⟶ℝ*)
71 simpr 485 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
7249, 69, 70, 71limsuppnfd 41859 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (lim sup‘𝐹) = +∞)
7372ex 413 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → (lim sup‘𝐹) = +∞))
7468, 73impbid 213 1 (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wnfc 2958  wral 3135  wrex 3136  Vcvv 3492  wss 3933   class class class wbr 5057  wf 6344  cfv 6348  cr 10524  +∞cpnf 10660  *cxr 10662   < clt 10663  cle 10664  lim supclsp 14815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-ico 12732  df-limsup 14816
This theorem is referenced by:  limsuppnf  41868
  Copyright terms: Public domain W3C validator