Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupresuz Structured version   Visualization version   GIF version

Theorem limsupresuz 41860
Description: If the real part of the domain of a function is a subset of the integers, the superior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupresuz.m (𝜑𝑀 ∈ ℤ)
limsupresuz.z 𝑍 = (ℤ𝑀)
limsupresuz.f (𝜑𝐹𝑉)
limsupresuz.d (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ)
Assertion
Ref Expression
limsupresuz (𝜑 → (lim sup‘(𝐹𝑍)) = (lim sup‘𝐹))

Proof of Theorem limsupresuz
StepHypRef Expression
1 rescom 5872 . . . . 5 ((𝐹𝑍) ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ 𝑍)
21fveq2i 6666 . . . 4 (lim sup‘((𝐹𝑍) ↾ ℝ)) = (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍))
32a1i 11 . . 3 (𝜑 → (lim sup‘((𝐹𝑍) ↾ ℝ)) = (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍)))
4 relres 5875 . . . . . . . . . 10 Rel (𝐹 ↾ ℝ)
54a1i 11 . . . . . . . . 9 (𝜑 → Rel (𝐹 ↾ ℝ))
6 limsupresuz.d . . . . . . . . 9 (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ)
7 relssres 5886 . . . . . . . . 9 ((Rel (𝐹 ↾ ℝ) ∧ dom (𝐹 ↾ ℝ) ⊆ ℤ) → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ))
85, 6, 7syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ))
98eqcomd 2824 . . . . . . 7 (𝜑 → (𝐹 ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ ℤ))
109reseq1d 5845 . . . . . 6 (𝜑 → ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)) = (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)))
11 resres 5859 . . . . . . 7 (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞)))
1211a1i 11 . . . . . 6 (𝜑 → (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))))
13 limsupresuz.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
14 limsupresuz.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
1513, 14uzinico 41712 . . . . . . . 8 (𝜑𝑍 = (ℤ ∩ (𝑀[,)+∞)))
1615eqcomd 2824 . . . . . . 7 (𝜑 → (ℤ ∩ (𝑀[,)+∞)) = 𝑍)
1716reseq2d 5846 . . . . . 6 (𝜑 → ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))) = ((𝐹 ↾ ℝ) ↾ 𝑍))
1810, 12, 173eqtrrd 2858 . . . . 5 (𝜑 → ((𝐹 ↾ ℝ) ↾ 𝑍) = ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)))
1918fveq2d 6667 . . . 4 (𝜑 → (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim sup‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))))
2013zred 12075 . . . . 5 (𝜑𝑀 ∈ ℝ)
21 eqid 2818 . . . . 5 (𝑀[,)+∞) = (𝑀[,)+∞)
22 limsupresuz.f . . . . . 6 (𝜑𝐹𝑉)
2322resexd 41279 . . . . 5 (𝜑 → (𝐹 ↾ ℝ) ∈ V)
2420, 21, 23limsupresico 41857 . . . 4 (𝜑 → (lim sup‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))) = (lim sup‘(𝐹 ↾ ℝ)))
2519, 24eqtrd 2853 . . 3 (𝜑 → (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim sup‘(𝐹 ↾ ℝ)))
263, 25eqtrd 2853 . 2 (𝜑 → (lim sup‘((𝐹𝑍) ↾ ℝ)) = (lim sup‘(𝐹 ↾ ℝ)))
2722resexd 41279 . . 3 (𝜑 → (𝐹𝑍) ∈ V)
2827limsupresre 41853 . 2 (𝜑 → (lim sup‘((𝐹𝑍) ↾ ℝ)) = (lim sup‘(𝐹𝑍)))
2922limsupresre 41853 . 2 (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = (lim sup‘𝐹))
3026, 28, 293eqtr3d 2861 1 (𝜑 → (lim sup‘(𝐹𝑍)) = (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105  Vcvv 3492  cin 3932  wss 3933  dom cdm 5548  cres 5550  Rel wrel 5553  cfv 6348  (class class class)co 7145  cr 10524  +∞cpnf 10660  cz 11969  cuz 12231  [,)cico 12728  lim supclsp 14815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-ico 12732  df-limsup 14816
This theorem is referenced by:  limsupresuz2  41866
  Copyright terms: Public domain W3C validator