Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupreuzmpt Structured version   Visualization version   GIF version

Theorem limsupreuzmpt 40289
 Description: Given a function on the reals, defined on a set of upper integers, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller or equal than the function, infinitely often; 2. there is a real number that is larger or equal than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupreuzmpt.j 𝑗𝜑
limsupreuzmpt.m (𝜑𝑀 ∈ ℤ)
limsupreuzmpt.z 𝑍 = (ℤ𝑀)
limsupreuzmpt.b ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
limsupreuzmpt (𝜑 → ((lim sup‘(𝑗𝑍𝐵)) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)))
Distinct variable groups:   𝐵,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem limsupreuzmpt
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfmpt1 4780 . . 3 𝑗(𝑗𝑍𝐵)
2 limsupreuzmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
3 limsupreuzmpt.z . . 3 𝑍 = (ℤ𝑀)
4 limsupreuzmpt.j . . . 4 𝑗𝜑
5 limsupreuzmpt.b . . . 4 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
64, 5fmptd2f 39756 . . 3 (𝜑 → (𝑗𝑍𝐵):𝑍⟶ℝ)
71, 2, 3, 6limsupreuz 40287 . 2 (𝜑 → ((lim sup‘(𝑗𝑍𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦)))
8 nfv 1883 . . . . . . . 8 𝑗 𝑖𝑍
94, 8nfan 1868 . . . . . . 7 𝑗(𝜑𝑖𝑍)
10 simpll 805 . . . . . . . . 9 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝜑)
113uztrn2 11743 . . . . . . . . . 10 ((𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
1211adantll 750 . . . . . . . . 9 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
13 eqid 2651 . . . . . . . . . . 11 (𝑗𝑍𝐵) = (𝑗𝑍𝐵)
1413a1i 11 . . . . . . . . . 10 (𝜑 → (𝑗𝑍𝐵) = (𝑗𝑍𝐵))
1514, 5fvmpt2d 6332 . . . . . . . . 9 ((𝜑𝑗𝑍) → ((𝑗𝑍𝐵)‘𝑗) = 𝐵)
1610, 12, 15syl2anc 694 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → ((𝑗𝑍𝐵)‘𝑗) = 𝐵)
1716breq2d 4697 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → (𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ 𝑦𝐵))
189, 17rexbida 3076 . . . . . 6 ((𝜑𝑖𝑍) → (∃𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∃𝑗 ∈ (ℤ𝑖)𝑦𝐵))
1918ralbidva 3014 . . . . 5 (𝜑 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵))
2019rexbidv 3081 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵))
21 breq1 4688 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
2221rexbidv 3081 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑗 ∈ (ℤ𝑖)𝑥𝐵))
2322ralbidv 3015 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥𝐵))
24 fveq2 6229 . . . . . . . . . 10 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
2524rexeqdv 3175 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑗 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥𝐵))
2625cbvralv 3201 . . . . . . . 8 (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵)
2726a1i 11 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
2823, 27bitrd 268 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
2928cbvrexv 3202 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵)
3029a1i 11 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
3120, 30bitrd 268 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
3215breq1d 4695 . . . . . 6 ((𝜑𝑗𝑍) → (((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦𝐵𝑦))
334, 32ralbida 3011 . . . . 5 (𝜑 → (∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∀𝑗𝑍 𝐵𝑦))
3433rexbidv 3081 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦))
35 breq2 4689 . . . . . . 7 (𝑦 = 𝑥 → (𝐵𝑦𝐵𝑥))
3635ralbidv 3015 . . . . . 6 (𝑦 = 𝑥 → (∀𝑗𝑍 𝐵𝑦 ↔ ∀𝑗𝑍 𝐵𝑥))
3736cbvrexv 3202 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
3837a1i 11 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
3934, 38bitrd 268 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
4031, 39anbi12d 747 . 2 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)))
417, 40bitrd 268 1 (𝜑 → ((lim sup‘(𝑗𝑍𝐵)) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523  Ⅎwnf 1748   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942   class class class wbr 4685   ↦ cmpt 4762  ‘cfv 5926  ℝcr 9973   ≤ cle 10113  ℤcz 11415  ℤ≥cuz 11725  lim supclsp 14245 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-ico 12219  df-fz 12365  df-fzo 12505  df-fl 12633  df-ceil 12634  df-limsup 14246 This theorem is referenced by:  liminfreuzlem  40352
 Copyright terms: Public domain W3C validator