MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupval2 Structured version   Visualization version   GIF version

Theorem limsupval2 14831
Description: The superior limit, relativized to an unbounded set. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
limsupval.1 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
limsupval2.1 (𝜑𝐹𝑉)
limsupval2.2 (𝜑𝐴 ⊆ ℝ)
limsupval2.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
Assertion
Ref Expression
limsupval2 (𝜑 → (lim sup‘𝐹) = inf((𝐺𝐴), ℝ*, < ))
Distinct variable groups:   𝑘,𝐹   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐺(𝑘)   𝑉(𝑘)

Proof of Theorem limsupval2
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupval2.1 . . 3 (𝜑𝐹𝑉)
2 limsupval.1 . . . 4 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
32limsupval 14825 . . 3 (𝐹𝑉 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
41, 3syl 17 . 2 (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
5 imassrn 5934 . . . . 5 (𝐺𝐴) ⊆ ran 𝐺
62limsupgf 14826 . . . . . . 7 𝐺:ℝ⟶ℝ*
7 frn 6514 . . . . . . 7 (𝐺:ℝ⟶ℝ* → ran 𝐺 ⊆ ℝ*)
86, 7ax-mp 5 . . . . . 6 ran 𝐺 ⊆ ℝ*
9 infxrlb 12721 . . . . . . 7 ((ran 𝐺 ⊆ ℝ*𝑥 ∈ ran 𝐺) → inf(ran 𝐺, ℝ*, < ) ≤ 𝑥)
109ralrimiva 3182 . . . . . 6 (ran 𝐺 ⊆ ℝ* → ∀𝑥 ∈ ran 𝐺inf(ran 𝐺, ℝ*, < ) ≤ 𝑥)
118, 10mp1i 13 . . . . 5 (𝜑 → ∀𝑥 ∈ ran 𝐺inf(ran 𝐺, ℝ*, < ) ≤ 𝑥)
12 ssralv 4032 . . . . 5 ((𝐺𝐴) ⊆ ran 𝐺 → (∀𝑥 ∈ ran 𝐺inf(ran 𝐺, ℝ*, < ) ≤ 𝑥 → ∀𝑥 ∈ (𝐺𝐴)inf(ran 𝐺, ℝ*, < ) ≤ 𝑥))
135, 11, 12mpsyl 68 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐺𝐴)inf(ran 𝐺, ℝ*, < ) ≤ 𝑥)
145, 8sstri 3975 . . . . 5 (𝐺𝐴) ⊆ ℝ*
15 infxrcl 12720 . . . . . 6 (ran 𝐺 ⊆ ℝ* → inf(ran 𝐺, ℝ*, < ) ∈ ℝ*)
168, 15ax-mp 5 . . . . 5 inf(ran 𝐺, ℝ*, < ) ∈ ℝ*
17 infxrgelb 12722 . . . . 5 (((𝐺𝐴) ⊆ ℝ* ∧ inf(ran 𝐺, ℝ*, < ) ∈ ℝ*) → (inf(ran 𝐺, ℝ*, < ) ≤ inf((𝐺𝐴), ℝ*, < ) ↔ ∀𝑥 ∈ (𝐺𝐴)inf(ran 𝐺, ℝ*, < ) ≤ 𝑥))
1814, 16, 17mp2an 690 . . . 4 (inf(ran 𝐺, ℝ*, < ) ≤ inf((𝐺𝐴), ℝ*, < ) ↔ ∀𝑥 ∈ (𝐺𝐴)inf(ran 𝐺, ℝ*, < ) ≤ 𝑥)
1913, 18sylibr 236 . . 3 (𝜑 → inf(ran 𝐺, ℝ*, < ) ≤ inf((𝐺𝐴), ℝ*, < ))
20 limsupval2.3 . . . . . . 7 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
21 limsupval2.2 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
22 ressxr 10679 . . . . . . . . 9 ℝ ⊆ ℝ*
2321, 22sstrdi 3978 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ*)
24 supxrunb1 12706 . . . . . . . 8 (𝐴 ⊆ ℝ* → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
2523, 24syl 17 . . . . . . 7 (𝜑 → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
2620, 25mpbird 259 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥)
27 infxrcl 12720 . . . . . . . . . 10 ((𝐺𝐴) ⊆ ℝ* → inf((𝐺𝐴), ℝ*, < ) ∈ ℝ*)
2814, 27mp1i 13 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → inf((𝐺𝐴), ℝ*, < ) ∈ ℝ*)
2921sselda 3966 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
3029ad2ant2r 745 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑥 ∈ ℝ)
316ffvelrni 6844 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝐺𝑥) ∈ ℝ*)
3230, 31syl 17 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) ∈ ℝ*)
336ffvelrni 6844 . . . . . . . . . 10 (𝑛 ∈ ℝ → (𝐺𝑛) ∈ ℝ*)
3433ad2antlr 725 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑛) ∈ ℝ*)
35 ffn 6508 . . . . . . . . . . . 12 (𝐺:ℝ⟶ℝ*𝐺 Fn ℝ)
366, 35mp1i 13 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝐺 Fn ℝ)
3721ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝐴 ⊆ ℝ)
38 simprl 769 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑥𝐴)
39 fnfvima 6989 . . . . . . . . . . 11 ((𝐺 Fn ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (𝐺𝑥) ∈ (𝐺𝐴))
4036, 37, 38, 39syl3anc 1367 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) ∈ (𝐺𝐴))
41 infxrlb 12721 . . . . . . . . . 10 (((𝐺𝐴) ⊆ ℝ* ∧ (𝐺𝑥) ∈ (𝐺𝐴)) → inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑥))
4214, 40, 41sylancr 589 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑥))
43 simplr 767 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑛 ∈ ℝ)
44 simprr 771 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑛𝑥)
45 limsupgord 14823 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑛𝑥) → sup(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
4643, 30, 44, 45syl3anc 1367 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → sup(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
472limsupgval 14827 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝐺𝑥) = sup(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
4830, 47syl 17 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) = sup(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
492limsupgval 14827 . . . . . . . . . . 11 (𝑛 ∈ ℝ → (𝐺𝑛) = sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
5049ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑛) = sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
5146, 48, 503brtr4d 5090 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) ≤ (𝐺𝑛))
5228, 32, 34, 42, 51xrletrd 12549 . . . . . . . 8 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛))
5352rexlimdvaa 3285 . . . . . . 7 ((𝜑𝑛 ∈ ℝ) → (∃𝑥𝐴 𝑛𝑥 → inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛)))
5453ralimdva 3177 . . . . . 6 (𝜑 → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 → ∀𝑛 ∈ ℝ inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛)))
5526, 54mpd 15 . . . . 5 (𝜑 → ∀𝑛 ∈ ℝ inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛))
566, 35ax-mp 5 . . . . . 6 𝐺 Fn ℝ
57 breq2 5062 . . . . . . 7 (𝑥 = (𝐺𝑛) → (inf((𝐺𝐴), ℝ*, < ) ≤ 𝑥 ↔ inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛)))
5857ralrn 6848 . . . . . 6 (𝐺 Fn ℝ → (∀𝑥 ∈ ran 𝐺inf((𝐺𝐴), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑛 ∈ ℝ inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛)))
5956, 58ax-mp 5 . . . . 5 (∀𝑥 ∈ ran 𝐺inf((𝐺𝐴), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑛 ∈ ℝ inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛))
6055, 59sylibr 236 . . . 4 (𝜑 → ∀𝑥 ∈ ran 𝐺inf((𝐺𝐴), ℝ*, < ) ≤ 𝑥)
6114, 27ax-mp 5 . . . . 5 inf((𝐺𝐴), ℝ*, < ) ∈ ℝ*
62 infxrgelb 12722 . . . . 5 ((ran 𝐺 ⊆ ℝ* ∧ inf((𝐺𝐴), ℝ*, < ) ∈ ℝ*) → (inf((𝐺𝐴), ℝ*, < ) ≤ inf(ran 𝐺, ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺inf((𝐺𝐴), ℝ*, < ) ≤ 𝑥))
638, 61, 62mp2an 690 . . . 4 (inf((𝐺𝐴), ℝ*, < ) ≤ inf(ran 𝐺, ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺inf((𝐺𝐴), ℝ*, < ) ≤ 𝑥)
6460, 63sylibr 236 . . 3 (𝜑 → inf((𝐺𝐴), ℝ*, < ) ≤ inf(ran 𝐺, ℝ*, < ))
65 xrletri3 12541 . . . 4 ((inf(ran 𝐺, ℝ*, < ) ∈ ℝ* ∧ inf((𝐺𝐴), ℝ*, < ) ∈ ℝ*) → (inf(ran 𝐺, ℝ*, < ) = inf((𝐺𝐴), ℝ*, < ) ↔ (inf(ran 𝐺, ℝ*, < ) ≤ inf((𝐺𝐴), ℝ*, < ) ∧ inf((𝐺𝐴), ℝ*, < ) ≤ inf(ran 𝐺, ℝ*, < ))))
6616, 61, 65mp2an 690 . . 3 (inf(ran 𝐺, ℝ*, < ) = inf((𝐺𝐴), ℝ*, < ) ↔ (inf(ran 𝐺, ℝ*, < ) ≤ inf((𝐺𝐴), ℝ*, < ) ∧ inf((𝐺𝐴), ℝ*, < ) ≤ inf(ran 𝐺, ℝ*, < )))
6719, 64, 66sylanbrc 585 . 2 (𝜑 → inf(ran 𝐺, ℝ*, < ) = inf((𝐺𝐴), ℝ*, < ))
684, 67eqtrd 2856 1 (𝜑 → (lim sup‘𝐹) = inf((𝐺𝐴), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  cin 3934  wss 3935   class class class wbr 5058  cmpt 5138  ran crn 5550  cima 5552   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  supcsup 8898  infcinf 8899  cr 10530  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670  [,)cico 12734  lim supclsp 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-ico 12738  df-limsup 14822
This theorem is referenced by:  mbflimsup  24261  limsupresico  41974  limsupvaluz  41982
  Copyright terms: Public domain W3C validator