Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupval4 Structured version   Visualization version   GIF version

Theorem limsupval4 40344
 Description: Alternate definition of lim inf when the given a function is eventually extended real valued. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupval4.x 𝑥𝜑
limsupval4.a (𝜑𝐴𝑉)
limsupval4.m (𝜑𝑀 ∈ ℝ)
limsupval4.b ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
limsupval4 (𝜑 → (lim sup‘(𝑥𝐴𝐵)) = -𝑒(lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem limsupval4
StepHypRef Expression
1 ovex 6718 . . . . . . . 8 (𝑀[,)+∞) ∈ V
21inex2 4833 . . . . . . 7 (𝐴 ∩ (𝑀[,)+∞)) ∈ V
32mptex 6527 . . . . . 6 (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵) ∈ V
4 limsupcl 14248 . . . . . 6 ((𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵) ∈ V → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ*)
53, 4ax-mp 5 . . . . 5 (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ*
65a1i 11 . . . 4 (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ*)
76xnegnegd 39982 . . 3 (𝜑 → -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
87eqcomd 2657 . 2 (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
9 limsupval4.a . . 3 (𝜑𝐴𝑉)
10 limsupval4.m . . 3 (𝜑𝑀 ∈ ℝ)
11 eqid 2651 . . 3 (𝑀[,)+∞) = (𝑀[,)+∞)
129, 10, 11limsupresicompt 40306 . 2 (𝜑 → (lim sup‘(𝑥𝐴𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
13 limsupval4.x . . . . 5 𝑥𝜑
14 limsupval4.b . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*)
1514xnegcld 12168 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → -𝑒𝐵 ∈ ℝ*)
1613, 9, 10, 15liminfval3 40340 . . . 4 (𝜑 → (lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)))
179, 10, 11limsupresicompt 40306 . . . . . 6 (𝜑 → (lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵)))
1814xnegnegd 39982 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → -𝑒-𝑒𝐵 = 𝐵)
1913, 18mpteq2da 4776 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵) = (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))
2019fveq2d 6233 . . . . . 6 (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2117, 20eqtrd 2685 . . . . 5 (𝜑 → (lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2221xnegeqd 39977 . . . 4 (𝜑 → -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2316, 22eqtrd 2685 . . 3 (𝜑 → (lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2423xnegeqd 39977 . 2 (𝜑 → -𝑒(lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)) = -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
258, 12, 243eqtr4d 2695 1 (𝜑 → (lim sup‘(𝑥𝐴𝐵)) = -𝑒(lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523  Ⅎwnf 1748   ∈ wcel 2030  Vcvv 3231   ∩ cin 3606   ↦ cmpt 4762  ‘cfv 5926  (class class class)co 6690  ℝcr 9973  +∞cpnf 10109  ℝ*cxr 10111  -𝑒cxne 11981  [,)cico 12215  lim supclsp 14245  lim infclsi 40301 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-xneg 11984  df-ico 12219  df-limsup 14246  df-liminf 40302 This theorem is referenced by:  limsupvaluz3  40348
 Copyright terms: Public domain W3C validator