MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lincmb01cmp Structured version   Visualization version   GIF version

Theorem lincmb01cmp 12869
Description: A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.)
Assertion
Ref Expression
lincmb01cmp (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) ∈ (𝐴[,]𝐵))

Proof of Theorem lincmb01cmp
StepHypRef Expression
1 simpr 485 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝑇 ∈ (0[,]1))
2 0red 10632 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 0 ∈ ℝ)
3 1red 10630 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 1 ∈ ℝ)
4 elicc01 12842 . . . . . . . 8 (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
54simp1bi 1137 . . . . . . 7 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
65adantl 482 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝑇 ∈ ℝ)
7 difrp 12415 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))
87biimp3a 1460 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ+)
98adantr 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℝ+)
10 eqid 2818 . . . . . . 7 (0 · (𝐵𝐴)) = (0 · (𝐵𝐴))
11 eqid 2818 . . . . . . 7 (1 · (𝐵𝐴)) = (1 · (𝐵𝐴))
1210, 11iccdil 12864 . . . . . 6 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ+)) → (𝑇 ∈ (0[,]1) ↔ (𝑇 · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
132, 3, 6, 9, 12syl22anc 834 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 ∈ (0[,]1) ↔ (𝑇 · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
141, 13mpbid 233 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))))
15 simpl2 1184 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐵 ∈ ℝ)
16 simpl1 1183 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐴 ∈ ℝ)
1715, 16resubcld 11056 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℝ)
1817recnd 10657 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℂ)
1918mul02d 10826 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (0 · (𝐵𝐴)) = 0)
2018mulid2d 10647 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (1 · (𝐵𝐴)) = (𝐵𝐴))
2119, 20oveq12d 7163 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))) = (0[,](𝐵𝐴)))
2214, 21eleqtrd 2912 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) ∈ (0[,](𝐵𝐴)))
236, 17remulcld 10659 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) ∈ ℝ)
24 eqid 2818 . . . . 5 (0 + 𝐴) = (0 + 𝐴)
25 eqid 2818 . . . . 5 ((𝐵𝐴) + 𝐴) = ((𝐵𝐴) + 𝐴)
2624, 25iccshftr 12860 . . . 4 (((0 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ) ∧ ((𝑇 · (𝐵𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ)) → ((𝑇 · (𝐵𝐴)) ∈ (0[,](𝐵𝐴)) ↔ ((𝑇 · (𝐵𝐴)) + 𝐴) ∈ ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴))))
272, 17, 23, 16, 26syl22anc 834 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) ∈ (0[,](𝐵𝐴)) ↔ ((𝑇 · (𝐵𝐴)) + 𝐴) ∈ ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴))))
2822, 27mpbid 233 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) + 𝐴) ∈ ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴)))
296recnd 10657 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝑇 ∈ ℂ)
3015recnd 10657 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐵 ∈ ℂ)
3129, 30mulcld 10649 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐵) ∈ ℂ)
3216recnd 10657 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐴 ∈ ℂ)
3329, 32mulcld 10649 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐴) ∈ ℂ)
3431, 33, 32subadd23d 11007 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((𝑇 · 𝐵) − (𝑇 · 𝐴)) + 𝐴) = ((𝑇 · 𝐵) + (𝐴 − (𝑇 · 𝐴))))
3529, 30, 32subdid 11084 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) = ((𝑇 · 𝐵) − (𝑇 · 𝐴)))
3635oveq1d 7160 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) + 𝐴) = (((𝑇 · 𝐵) − (𝑇 · 𝐴)) + 𝐴))
37 1re 10629 . . . . . . . 8 1 ∈ ℝ
38 resubcl 10938 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
3937, 6, 38sylancr 587 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (1 − 𝑇) ∈ ℝ)
4039, 16remulcld 10659 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) ∈ ℝ)
4140recnd 10657 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) ∈ ℂ)
4241, 31addcomd 10830 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) = ((𝑇 · 𝐵) + ((1 − 𝑇) · 𝐴)))
43 1cnd 10624 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 1 ∈ ℂ)
4443, 29, 32subdird 11085 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) = ((1 · 𝐴) − (𝑇 · 𝐴)))
4532mulid2d 10647 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (1 · 𝐴) = 𝐴)
4645oveq1d 7160 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 · 𝐴) − (𝑇 · 𝐴)) = (𝐴 − (𝑇 · 𝐴)))
4744, 46eqtrd 2853 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) = (𝐴 − (𝑇 · 𝐴)))
4847oveq2d 7161 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · 𝐵) + ((1 − 𝑇) · 𝐴)) = ((𝑇 · 𝐵) + (𝐴 − (𝑇 · 𝐴))))
4942, 48eqtrd 2853 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) = ((𝑇 · 𝐵) + (𝐴 − (𝑇 · 𝐴))))
5034, 36, 493eqtr4d 2863 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) + 𝐴) = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)))
5132addid2d 10829 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (0 + 𝐴) = 𝐴)
5230, 32npcand 10989 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝐵𝐴) + 𝐴) = 𝐵)
5351, 52oveq12d 7163 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴)) = (𝐴[,]𝐵))
5428, 50, 533eltr3d 2924 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079  wcel 2105   class class class wbr 5057  (class class class)co 7145  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530   < clt 10663  cle 10664  cmin 10858  +crp 12377  [,]cicc 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-rp 12378  df-icc 12733
This theorem is referenced by:  iccf1o  12870  icccvx  23481  efcvx  24964  logccv  25173  cvxcl  25489
  Copyright terms: Public domain W3C validator