Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit3lem1 Structured version   Visualization version   GIF version

Theorem lincresunit3lem1 44541
Description: Lemma 1 for lincresunit3 44543. (Contributed by AV, 17-May-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunit3lem1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   𝑧,𝑠
Allowed substitution hints:   𝐵(𝑧)   𝑅(𝑧,𝑠)   𝑆(𝑧)   · (𝑧)   𝑈(𝑧)   𝐸(𝑧)   𝐹(𝑧)   𝐺(𝑧,𝑠)   𝐼(𝑧)   𝑀(𝑧)   𝑁(𝑧)   𝑋(𝑧)   0 (𝑧,𝑠)   𝑍(𝑧,𝑠)

Proof of Theorem lincresunit3lem1
StepHypRef Expression
1 lincresunit.g . . . . 5 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
2 fveq2 6673 . . . . . 6 (𝑠 = 𝑧 → (𝐹𝑠) = (𝐹𝑧))
32oveq2d 7175 . . . . 5 (𝑠 = 𝑧 → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))
4 simpr3 1192 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧 ∈ (𝑆 ∖ {𝑋}))
5 ovexd 7194 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ V)
61, 3, 4, 5fvmptd3 6794 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐺𝑧) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))
76oveq1d 7174 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐺𝑧)( ·𝑠𝑀)𝑧) = (((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧))
87oveq2d 7175 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)))
9 simp2 1133 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑀 ∈ LMod)
109adantr 483 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑀 ∈ LMod)
11 lincresunit.r . . . . . 6 𝑅 = (Scalar‘𝑀)
1211lmodfgrp 19646 . . . . 5 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
13123ad2ant2 1130 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Grp)
14 lincresunit.e . . . . . 6 𝐸 = (Base‘𝑅)
15 lincresunit.u . . . . . 6 𝑈 = (Unit‘𝑅)
1614, 15unitcl 19412 . . . . 5 ((𝐹𝑋) ∈ 𝑈 → (𝐹𝑋) ∈ 𝐸)
17163ad2ant2 1130 . . . 4 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑋) ∈ 𝐸)
18 lincresunit.n . . . . 5 𝑁 = (invg𝑅)
1914, 18grpinvcl 18154 . . . 4 ((𝑅 ∈ Grp ∧ (𝐹𝑋) ∈ 𝐸) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
2013, 17, 19syl2an 597 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
21 3simpa 1144 . . . . 5 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
2221anim2i 618 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)))
23 eldifi 4106 . . . . . 6 (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝑆)
24233ad2ant3 1131 . . . . 5 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧𝑆)
2524adantl 484 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧𝑆)
26 lincresunit.b . . . . 5 𝐵 = (Base‘𝑀)
27 lincresunit.0 . . . . 5 0 = (0g𝑅)
28 lincresunit.z . . . . 5 𝑍 = (0g𝑀)
29 lincresunit.i . . . . 5 𝐼 = (invr𝑅)
30 lincresunit.t . . . . 5 · = (.r𝑅)
3126, 11, 14, 15, 27, 28, 18, 29, 30, 1lincresunitlem2 44538 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑧𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸)
3222, 25, 31syl2anc 586 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸)
33 elpwi 4551 . . . . . . . . 9 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
3433sseld 3969 . . . . . . . 8 (𝑆 ∈ 𝒫 𝐵 → (𝑧𝑆𝑧𝐵))
3523, 34syl5com 31 . . . . . . 7 (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝑆 ∈ 𝒫 𝐵𝑧𝐵))
36353ad2ant3 1131 . . . . . 6 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝑆 ∈ 𝒫 𝐵𝑧𝐵))
3736com12 32 . . . . 5 (𝑆 ∈ 𝒫 𝐵 → ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧𝐵))
38373ad2ant1 1129 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧𝐵))
3938imp 409 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧𝐵)
40 eqid 2824 . . . . 5 ( ·𝑠𝑀) = ( ·𝑠𝑀)
4126, 11, 40, 14, 30lmodvsass 19662 . . . 4 ((𝑀 ∈ LMod ∧ ((𝑁‘(𝐹𝑋)) ∈ 𝐸 ∧ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸𝑧𝐵)) → (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)))
4241eqcomd 2830 . . 3 ((𝑀 ∈ LMod ∧ ((𝑁‘(𝐹𝑋)) ∈ 𝐸 ∧ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸𝑧𝐵)) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)) = (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧))
4310, 20, 32, 39, 42syl13anc 1368 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)) = (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧))
4411lmodring 19645 . . . . . 6 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
45443ad2ant2 1130 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Ring)
4645adantr 483 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑅 ∈ Ring)
47 elmapi 8431 . . . . . . 7 (𝐹 ∈ (𝐸m 𝑆) → 𝐹:𝑆𝐸)
48 ffvelrn 6852 . . . . . . 7 ((𝐹:𝑆𝐸𝑧𝑆) → (𝐹𝑧) ∈ 𝐸)
4947, 23, 48syl2an 597 . . . . . 6 ((𝐹 ∈ (𝐸m 𝑆) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑧) ∈ 𝐸)
50493adant2 1127 . . . . 5 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑧) ∈ 𝐸)
5150adantl 484 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐹𝑧) ∈ 𝐸)
52 simp2 1133 . . . . 5 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑋) ∈ 𝑈)
5352adantl 484 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐹𝑋) ∈ 𝑈)
5414, 15, 18, 29, 30invginvrid 44422 . . . 4 ((𝑅 ∈ Ring ∧ (𝐹𝑧) ∈ 𝐸 ∧ (𝐹𝑋) ∈ 𝑈) → ((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))) = (𝐹𝑧))
5546, 51, 53, 54syl3anc 1367 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))) = (𝐹𝑧))
5655oveq1d 7174 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
578, 43, 563eqtrd 2863 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  Vcvv 3497  cdif 3936  𝒫 cpw 4542  {csn 4570  cmpt 5149  wf 6354  cfv 6358  (class class class)co 7159  m cmap 8409  Basecbs 16486  .rcmulr 16569  Scalarcsca 16571   ·𝑠 cvsca 16572  0gc0g 16716  Grpcgrp 18106  invgcminusg 18107  Ringcrg 19300  Unitcui 19392  invrcinvr 19424  LModclmod 19637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-tpos 7895  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-grp 18109  df-minusg 18110  df-mgp 19243  df-ur 19255  df-ring 19302  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-lmod 19639
This theorem is referenced by:  lincresunit3lem2  44542
  Copyright terms: Public domain W3C validator