Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit3lem1 Structured version   Visualization version   GIF version

Theorem lincresunit3lem1 42033
Description: Lemma 1 for lincresunit3 42035. (Contributed by AV, 17-May-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunit3lem1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   𝑧,𝑠
Allowed substitution hints:   𝐵(𝑧)   𝑅(𝑧,𝑠)   𝑆(𝑧)   · (𝑧)   𝑈(𝑧)   𝐸(𝑧)   𝐹(𝑧)   𝐺(𝑧,𝑠)   𝐼(𝑧)   𝑀(𝑧)   𝑁(𝑧)   𝑋(𝑧)   0 (𝑧,𝑠)   𝑍(𝑧,𝑠)

Proof of Theorem lincresunit3lem1
StepHypRef Expression
1 lincresunit.g . . . . . 6 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
21a1i 11 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠))))
3 fveq2 6178 . . . . . . 7 (𝑠 = 𝑧 → (𝐹𝑠) = (𝐹𝑧))
43oveq2d 6651 . . . . . 6 (𝑠 = 𝑧 → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))
54adantl 482 . . . . 5 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) ∧ 𝑠 = 𝑧) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))
6 simpr3 1067 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧 ∈ (𝑆 ∖ {𝑋}))
7 ovexd 6665 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ V)
82, 5, 6, 7fvmptd 6275 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐺𝑧) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))
98oveq1d 6650 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐺𝑧)( ·𝑠𝑀)𝑧) = (((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧))
109oveq2d 6651 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)))
11 simp2 1060 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑀 ∈ LMod)
1211adantr 481 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑀 ∈ LMod)
13 lincresunit.r . . . . . 6 𝑅 = (Scalar‘𝑀)
1413lmodfgrp 18853 . . . . 5 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
15143ad2ant2 1081 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Grp)
16 lincresunit.e . . . . . 6 𝐸 = (Base‘𝑅)
17 lincresunit.u . . . . . 6 𝑈 = (Unit‘𝑅)
1816, 17unitcl 18640 . . . . 5 ((𝐹𝑋) ∈ 𝑈 → (𝐹𝑋) ∈ 𝐸)
19183ad2ant2 1081 . . . 4 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑋) ∈ 𝐸)
20 lincresunit.n . . . . 5 𝑁 = (invg𝑅)
2116, 20grpinvcl 17448 . . . 4 ((𝑅 ∈ Grp ∧ (𝐹𝑋) ∈ 𝐸) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
2215, 19, 21syl2an 494 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
23 3simpa 1056 . . . . 5 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
2423anim2i 592 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)))
25 eldifi 3724 . . . . . 6 (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝑆)
26253ad2ant3 1082 . . . . 5 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧𝑆)
2726adantl 482 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧𝑆)
28 lincresunit.b . . . . 5 𝐵 = (Base‘𝑀)
29 lincresunit.0 . . . . 5 0 = (0g𝑅)
30 lincresunit.z . . . . 5 𝑍 = (0g𝑀)
31 lincresunit.i . . . . 5 𝐼 = (invr𝑅)
32 lincresunit.t . . . . 5 · = (.r𝑅)
3328, 13, 16, 17, 29, 30, 20, 31, 32, 1lincresunitlem2 42030 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑧𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸)
3424, 27, 33syl2anc 692 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸)
35 elpwi 4159 . . . . . . . . 9 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
3635sseld 3594 . . . . . . . 8 (𝑆 ∈ 𝒫 𝐵 → (𝑧𝑆𝑧𝐵))
3725, 36syl5com 31 . . . . . . 7 (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝑆 ∈ 𝒫 𝐵𝑧𝐵))
38373ad2ant3 1082 . . . . . 6 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝑆 ∈ 𝒫 𝐵𝑧𝐵))
3938com12 32 . . . . 5 (𝑆 ∈ 𝒫 𝐵 → ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧𝐵))
40393ad2ant1 1080 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧𝐵))
4140imp 445 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧𝐵)
42 eqid 2620 . . . . 5 ( ·𝑠𝑀) = ( ·𝑠𝑀)
4328, 13, 42, 16, 32lmodvsass 18869 . . . 4 ((𝑀 ∈ LMod ∧ ((𝑁‘(𝐹𝑋)) ∈ 𝐸 ∧ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸𝑧𝐵)) → (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)))
4443eqcomd 2626 . . 3 ((𝑀 ∈ LMod ∧ ((𝑁‘(𝐹𝑋)) ∈ 𝐸 ∧ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸𝑧𝐵)) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)) = (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧))
4512, 22, 34, 41, 44syl13anc 1326 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)) = (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧))
4613lmodring 18852 . . . . . 6 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
47463ad2ant2 1081 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Ring)
4847adantr 481 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑅 ∈ Ring)
49 elmapi 7864 . . . . . . 7 (𝐹 ∈ (𝐸𝑚 𝑆) → 𝐹:𝑆𝐸)
50 ffvelrn 6343 . . . . . . 7 ((𝐹:𝑆𝐸𝑧𝑆) → (𝐹𝑧) ∈ 𝐸)
5149, 25, 50syl2an 494 . . . . . 6 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑧) ∈ 𝐸)
52513adant2 1078 . . . . 5 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑧) ∈ 𝐸)
5352adantl 482 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐹𝑧) ∈ 𝐸)
54 simp2 1060 . . . . 5 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑋) ∈ 𝑈)
5554adantl 482 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐹𝑋) ∈ 𝑈)
5616, 17, 20, 31, 32invginvrid 41913 . . . 4 ((𝑅 ∈ Ring ∧ (𝐹𝑧) ∈ 𝐸 ∧ (𝐹𝑋) ∈ 𝑈) → ((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))) = (𝐹𝑧))
5748, 53, 55, 56syl3anc 1324 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))) = (𝐹𝑧))
5857oveq1d 6650 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
5910, 45, 583eqtrd 2658 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1481  wcel 1988  Vcvv 3195  cdif 3564  𝒫 cpw 4149  {csn 4168  cmpt 4720  wf 5872  cfv 5876  (class class class)co 6635  𝑚 cmap 7842  Basecbs 15838  .rcmulr 15923  Scalarcsca 15925   ·𝑠 cvsca 15926  0gc0g 16081  Grpcgrp 17403  invgcminusg 17404  Ringcrg 18528  Unitcui 18620  invrcinvr 18652  LModclmod 18844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-tpos 7337  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-0g 16083  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-grp 17406  df-minusg 17407  df-mgp 18471  df-ur 18483  df-ring 18530  df-oppr 18604  df-dvdsr 18622  df-unit 18623  df-invr 18653  df-lmod 18846
This theorem is referenced by:  lincresunit3lem2  42034
  Copyright terms: Public domain W3C validator