Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit3lem2 Structured version   Visualization version   GIF version

Theorem lincresunit3lem2 41557
Description: Lemma 2 for lincresunit3 41558. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunit3lem2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})))
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   𝑧,𝑠,𝐵   𝑧,𝐸   𝑧,𝐹   𝑧,𝐺   𝑧,𝑀   𝑧,𝑁   𝑧,𝑅   𝑧,𝑆   𝑧,𝑈   𝑧,𝑋   𝑧,𝑍   0 ,𝑠,𝑧
Allowed substitution hints:   𝑅(𝑠)   · (𝑧)   𝐺(𝑠)   𝐼(𝑧)   𝑍(𝑠)

Proof of Theorem lincresunit3lem2
StepHypRef Expression
1 simpl2 1063 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝑀 ∈ LMod)
2 lincresunit.e . . . . . . . . . 10 𝐸 = (Base‘𝑅)
3 lincresunit.r . . . . . . . . . . 11 𝑅 = (Scalar‘𝑀)
43fveq2i 6151 . . . . . . . . . 10 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
52, 4eqtri 2643 . . . . . . . . 9 𝐸 = (Base‘(Scalar‘𝑀))
65oveq1i 6614 . . . . . . . 8 (𝐸𝑚 𝑆) = ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆)
76eleq2i 2690 . . . . . . 7 (𝐹 ∈ (𝐸𝑚 𝑆) ↔ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆))
87biimpi 206 . . . . . 6 (𝐹 ∈ (𝐸𝑚 𝑆) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆))
983ad2ant1 1080 . . . . 5 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆))
109adantl 482 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆))
11 difssd 3716 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ⊆ 𝑆)
12 elmapssres 7826 . . . 4 ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆) ∧ (𝑆 ∖ {𝑋}) ⊆ 𝑆) → (𝐹 ↾ (𝑆 ∖ {𝑋})) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑆 ∖ {𝑋})))
1310, 11, 12syl2anc 692 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝐹 ↾ (𝑆 ∖ {𝑋})) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑆 ∖ {𝑋})))
14 elpwi 4140 . . . . . . . 8 (𝑆 ∈ 𝒫 (Base‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
1514ssdifssd 3726 . . . . . . 7 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀))
16 difexg 4768 . . . . . . . 8 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑋}) ∈ V)
17 elpwg 4138 . . . . . . . 8 ((𝑆 ∖ {𝑋}) ∈ V → ((𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀)))
1816, 17syl 17 . . . . . . 7 (𝑆 ∈ 𝒫 (Base‘𝑀) → ((𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀)))
1915, 18mpbird 247 . . . . . 6 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
20 lincresunit.b . . . . . . 7 𝐵 = (Base‘𝑀)
2120pweqi 4134 . . . . . 6 𝒫 𝐵 = 𝒫 (Base‘𝑀)
2219, 21eleq2s 2716 . . . . 5 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
23223ad2ant1 1080 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
2423adantr 481 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
25 lincval 41486 . . 3 ((𝑀 ∈ LMod ∧ (𝐹 ↾ (𝑆 ∖ {𝑋})) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑆 ∖ {𝑋})) ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))))
261, 13, 24, 25syl3anc 1323 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))))
27 simpll 789 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
28 simplr1 1101 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝐹 ∈ (𝐸𝑚 𝑆))
29 simplr2 1102 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑋) ∈ 𝑈)
30 simpr 477 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧 ∈ (𝑆 ∖ {𝑋}))
31 lincresunit.u . . . . . . 7 𝑈 = (Unit‘𝑅)
32 lincresunit.0 . . . . . . 7 0 = (0g𝑅)
33 lincresunit.z . . . . . . 7 𝑍 = (0g𝑀)
34 lincresunit.n . . . . . . 7 𝑁 = (invg𝑅)
35 lincresunit.i . . . . . . 7 𝐼 = (invr𝑅)
36 lincresunit.t . . . . . . 7 · = (.r𝑅)
37 lincresunit.g . . . . . . 7 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
3820, 3, 2, 31, 32, 33, 34, 35, 36, 37lincresunit3lem1 41556 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
3927, 28, 29, 30, 38syl13anc 1325 . . . . 5 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
40 fvres 6164 . . . . . . . 8 (𝑧 ∈ (𝑆 ∖ {𝑋}) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧) = (𝐹𝑧))
4140adantl 482 . . . . . . 7 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧) = (𝐹𝑧))
4241eqcomd 2627 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑧) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧))
4342oveq1d 6619 . . . . 5 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝐹𝑧)( ·𝑠𝑀)𝑧) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))
4439, 43eqtrd 2655 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))
4544mpteq2dva 4704 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧))) = (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧)))
4645oveq2d 6620 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))))
47 eqid 2621 . . 3 (+g𝑀) = (+g𝑀)
48 eqid 2621 . . 3 ( ·𝑠𝑀) = ( ·𝑠𝑀)
49 difexg 4768 . . . . 5 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ V)
50493ad2ant1 1080 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ V)
5150adantr 481 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ∈ V)
523lmodfgrp 18793 . . . . . . 7 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
53523ad2ant2 1081 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Grp)
5453adantr 481 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ 𝐹 ∈ (𝐸𝑚 𝑆)) → 𝑅 ∈ Grp)
55 elmapi 7823 . . . . . . 7 (𝐹 ∈ (𝐸𝑚 𝑆) → 𝐹:𝑆𝐸)
56 ffvelrn 6313 . . . . . . . . 9 ((𝐹:𝑆𝐸𝑋𝑆) → (𝐹𝑋) ∈ 𝐸)
5756expcom 451 . . . . . . . 8 (𝑋𝑆 → (𝐹:𝑆𝐸 → (𝐹𝑋) ∈ 𝐸))
58573ad2ant3 1082 . . . . . . 7 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝐹:𝑆𝐸 → (𝐹𝑋) ∈ 𝐸))
5955, 58syl5com 31 . . . . . 6 (𝐹 ∈ (𝐸𝑚 𝑆) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝐹𝑋) ∈ 𝐸))
6059impcom 446 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ 𝐹 ∈ (𝐸𝑚 𝑆)) → (𝐹𝑋) ∈ 𝐸)
612, 34grpinvcl 17388 . . . . 5 ((𝑅 ∈ Grp ∧ (𝐹𝑋) ∈ 𝐸) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
6254, 60, 61syl2anc 692 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ 𝐹 ∈ (𝐸𝑚 𝑆)) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
63623ad2antr1 1224 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
641adantr 481 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑀 ∈ LMod)
6520, 3, 2, 31, 32, 33, 34, 35, 36, 37lincresunit1 41554 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))
66653adantr3 1220 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))
67 elmapi 7823 . . . . . 6 (𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
68 ffvelrn 6313 . . . . . . 7 ((𝐺:(𝑆 ∖ {𝑋})⟶𝐸𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐺𝑧) ∈ 𝐸)
6968ex 450 . . . . . 6 (𝐺:(𝑆 ∖ {𝑋})⟶𝐸 → (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝐺𝑧) ∈ 𝐸))
7066, 67, 693syl 18 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝐺𝑧) ∈ 𝐸))
7170imp 445 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐺𝑧) ∈ 𝐸)
72 elpwi 4140 . . . . . . . 8 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
73 eldifi 3710 . . . . . . . . 9 (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝑆)
74 ssel2 3578 . . . . . . . . . 10 ((𝑆𝐵𝑧𝑆) → 𝑧𝐵)
7574expcom 451 . . . . . . . . 9 (𝑧𝑆 → (𝑆𝐵𝑧𝐵))
7673, 75syl 17 . . . . . . . 8 (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝑆𝐵𝑧𝐵))
7772, 76syl5com 31 . . . . . . 7 (𝑆 ∈ 𝒫 𝐵 → (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝐵))
78773ad2ant1 1080 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝐵))
7978adantr 481 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝐵))
8079imp 445 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧𝐵)
8120, 3, 48, 2lmodvscl 18801 . . . 4 ((𝑀 ∈ LMod ∧ (𝐺𝑧) ∈ 𝐸𝑧𝐵) → ((𝐺𝑧)( ·𝑠𝑀)𝑧) ∈ 𝐵)
8264, 71, 80, 81syl3anc 1323 . . 3 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝐺𝑧)( ·𝑠𝑀)𝑧) ∈ 𝐵)
83 simp2 1060 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑀 ∈ LMod)
8483, 23jca 554 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
8584adantr 481 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
8620, 3, 2, 31, 32, 33, 34, 35, 36, 37lincresunit2 41555 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp 0 )
8786, 32syl6breq 4654 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp (0g𝑅))
883, 2scmfsupp 41447 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) ∧ 𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})) ∧ 𝐺 finSupp (0g𝑅)) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)) finSupp (0g𝑀))
8988, 33syl6breqr 4655 . . . 4 (((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) ∧ 𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})) ∧ 𝐺 finSupp (0g𝑅)) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)) finSupp 𝑍)
9085, 66, 87, 89syl3anc 1323 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)) finSupp 𝑍)
9120, 3, 2, 33, 47, 48, 1, 51, 63, 82, 90gsumvsmul 18848 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))))
9226, 46, 913eqtr2rd 2662 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3186  cdif 3552  wss 3555  𝒫 cpw 4130  {csn 4148   class class class wbr 4613  cmpt 4673  cres 5076  wf 5843  cfv 5847  (class class class)co 6604  𝑚 cmap 7802   finSupp cfsupp 8219  Basecbs 15781  +gcplusg 15862  .rcmulr 15863  Scalarcsca 15865   ·𝑠 cvsca 15866  0gc0g 16021   Σg cgsu 16022  Grpcgrp 17343  invgcminusg 17344  Unitcui 18560  invrcinvr 18592  LModclmod 18784   linC clinc 41481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-0g 16023  df-gsum 16024  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-grp 17346  df-minusg 17347  df-ghm 17579  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-lmod 18786  df-linc 41483
This theorem is referenced by:  lincresunit3  41558
  Copyright terms: Public domain W3C validator