Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit3lem2 Structured version   Visualization version   GIF version

Theorem lincresunit3lem2 44528
Description: Lemma 2 for lincresunit3 44529. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunit3lem2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})))
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   𝑧,𝑠,𝐵   𝑧,𝐸   𝑧,𝐹   𝑧,𝐺   𝑧,𝑀   𝑧,𝑁   𝑧,𝑅   𝑧,𝑆   𝑧,𝑈   𝑧,𝑋   𝑧,𝑍   0 ,𝑠,𝑧
Allowed substitution hints:   𝑅(𝑠)   · (𝑧)   𝐺(𝑠)   𝐼(𝑧)   𝑍(𝑠)

Proof of Theorem lincresunit3lem2
StepHypRef Expression
1 simpl2 1188 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝑀 ∈ LMod)
2 lincresunit.e . . . . . . . . . 10 𝐸 = (Base‘𝑅)
3 lincresunit.r . . . . . . . . . . 11 𝑅 = (Scalar‘𝑀)
43fveq2i 6668 . . . . . . . . . 10 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
52, 4eqtri 2844 . . . . . . . . 9 𝐸 = (Base‘(Scalar‘𝑀))
65oveq1i 7160 . . . . . . . 8 (𝐸m 𝑆) = ((Base‘(Scalar‘𝑀)) ↑m 𝑆)
76eleq2i 2904 . . . . . . 7 (𝐹 ∈ (𝐸m 𝑆) ↔ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆))
87biimpi 218 . . . . . 6 (𝐹 ∈ (𝐸m 𝑆) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆))
983ad2ant1 1129 . . . . 5 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆))
109adantl 484 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆))
11 difssd 4109 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ⊆ 𝑆)
12 elmapssres 8425 . . . 4 ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆) ∧ (𝑆 ∖ {𝑋}) ⊆ 𝑆) → (𝐹 ↾ (𝑆 ∖ {𝑋})) ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})))
1310, 11, 12syl2anc 586 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝐹 ↾ (𝑆 ∖ {𝑋})) ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})))
14 elpwi 4551 . . . . . . . 8 (𝑆 ∈ 𝒫 (Base‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
1514ssdifssd 4119 . . . . . . 7 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀))
16 difexg 5224 . . . . . . . 8 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑋}) ∈ V)
17 elpwg 4545 . . . . . . . 8 ((𝑆 ∖ {𝑋}) ∈ V → ((𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀)))
1816, 17syl 17 . . . . . . 7 (𝑆 ∈ 𝒫 (Base‘𝑀) → ((𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀)))
1915, 18mpbird 259 . . . . . 6 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
20 lincresunit.b . . . . . . 7 𝐵 = (Base‘𝑀)
2120pweqi 4543 . . . . . 6 𝒫 𝐵 = 𝒫 (Base‘𝑀)
2219, 21eleq2s 2931 . . . . 5 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
23223ad2ant1 1129 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
2423adantr 483 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
25 lincval 44457 . . 3 ((𝑀 ∈ LMod ∧ (𝐹 ↾ (𝑆 ∖ {𝑋})) ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})) ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))))
261, 13, 24, 25syl3anc 1367 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))))
27 simpll 765 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
28 simplr1 1211 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝐹 ∈ (𝐸m 𝑆))
29 simplr2 1212 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑋) ∈ 𝑈)
30 simpr 487 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧 ∈ (𝑆 ∖ {𝑋}))
31 lincresunit.u . . . . . . 7 𝑈 = (Unit‘𝑅)
32 lincresunit.0 . . . . . . 7 0 = (0g𝑅)
33 lincresunit.z . . . . . . 7 𝑍 = (0g𝑀)
34 lincresunit.n . . . . . . 7 𝑁 = (invg𝑅)
35 lincresunit.i . . . . . . 7 𝐼 = (invr𝑅)
36 lincresunit.t . . . . . . 7 · = (.r𝑅)
37 lincresunit.g . . . . . . 7 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
3820, 3, 2, 31, 32, 33, 34, 35, 36, 37lincresunit3lem1 44527 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
3927, 28, 29, 30, 38syl13anc 1368 . . . . 5 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
40 fvres 6684 . . . . . . . 8 (𝑧 ∈ (𝑆 ∖ {𝑋}) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧) = (𝐹𝑧))
4140adantl 484 . . . . . . 7 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧) = (𝐹𝑧))
4241eqcomd 2827 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑧) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧))
4342oveq1d 7165 . . . . 5 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝐹𝑧)( ·𝑠𝑀)𝑧) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))
4439, 43eqtrd 2856 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))
4544mpteq2dva 5154 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧))) = (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧)))
4645oveq2d 7166 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ (((𝐹 ↾ (𝑆 ∖ {𝑋}))‘𝑧)( ·𝑠𝑀)𝑧))))
47 eqid 2821 . . 3 (+g𝑀) = (+g𝑀)
48 eqid 2821 . . 3 ( ·𝑠𝑀) = ( ·𝑠𝑀)
49 difexg 5224 . . . . 5 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ V)
50493ad2ant1 1129 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ V)
5150adantr 483 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ∈ V)
523lmodfgrp 19637 . . . . . . 7 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
53523ad2ant2 1130 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Grp)
5453adantr 483 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ 𝐹 ∈ (𝐸m 𝑆)) → 𝑅 ∈ Grp)
55 elmapi 8422 . . . . . . 7 (𝐹 ∈ (𝐸m 𝑆) → 𝐹:𝑆𝐸)
56 ffvelrn 6844 . . . . . . . . 9 ((𝐹:𝑆𝐸𝑋𝑆) → (𝐹𝑋) ∈ 𝐸)
5756expcom 416 . . . . . . . 8 (𝑋𝑆 → (𝐹:𝑆𝐸 → (𝐹𝑋) ∈ 𝐸))
58573ad2ant3 1131 . . . . . . 7 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝐹:𝑆𝐸 → (𝐹𝑋) ∈ 𝐸))
5955, 58syl5com 31 . . . . . 6 (𝐹 ∈ (𝐸m 𝑆) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝐹𝑋) ∈ 𝐸))
6059impcom 410 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ 𝐹 ∈ (𝐸m 𝑆)) → (𝐹𝑋) ∈ 𝐸)
612, 34grpinvcl 18145 . . . . 5 ((𝑅 ∈ Grp ∧ (𝐹𝑋) ∈ 𝐸) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
6254, 60, 61syl2anc 586 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ 𝐹 ∈ (𝐸m 𝑆)) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
63623ad2antr1 1184 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
641adantr 483 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑀 ∈ LMod)
6520, 3, 2, 31, 32, 33, 34, 35, 36, 37lincresunit1 44525 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))
66653adantr3 1167 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))
67 elmapi 8422 . . . . . 6 (𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
68 ffvelrn 6844 . . . . . . 7 ((𝐺:(𝑆 ∖ {𝑋})⟶𝐸𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐺𝑧) ∈ 𝐸)
6968ex 415 . . . . . 6 (𝐺:(𝑆 ∖ {𝑋})⟶𝐸 → (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝐺𝑧) ∈ 𝐸))
7066, 67, 693syl 18 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝐺𝑧) ∈ 𝐸))
7170imp 409 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐺𝑧) ∈ 𝐸)
72 elpwi 4551 . . . . . . . 8 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
73 eldifi 4103 . . . . . . . . 9 (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝑆)
74 ssel2 3962 . . . . . . . . . 10 ((𝑆𝐵𝑧𝑆) → 𝑧𝐵)
7574expcom 416 . . . . . . . . 9 (𝑧𝑆 → (𝑆𝐵𝑧𝐵))
7673, 75syl 17 . . . . . . . 8 (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝑆𝐵𝑧𝐵))
7772, 76syl5com 31 . . . . . . 7 (𝑆 ∈ 𝒫 𝐵 → (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝐵))
78773ad2ant1 1129 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝐵))
7978adantr 483 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝐵))
8079imp 409 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧𝐵)
8120, 3, 48, 2lmodvscl 19645 . . . 4 ((𝑀 ∈ LMod ∧ (𝐺𝑧) ∈ 𝐸𝑧𝐵) → ((𝐺𝑧)( ·𝑠𝑀)𝑧) ∈ 𝐵)
8264, 71, 80, 81syl3anc 1367 . . 3 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → ((𝐺𝑧)( ·𝑠𝑀)𝑧) ∈ 𝐵)
83 simp2 1133 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑀 ∈ LMod)
8483, 23jca 514 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
8584adantr 483 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
8620, 3, 2, 31, 32, 33, 34, 35, 36, 37lincresunit2 44526 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp 0 )
8786, 32breqtrdi 5100 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp (0g𝑅))
883, 2scmfsupp 44419 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) ∧ 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) ∧ 𝐺 finSupp (0g𝑅)) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)) finSupp (0g𝑀))
8988, 33breqtrrdi 5101 . . . 4 (((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) ∧ 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) ∧ 𝐺 finSupp (0g𝑅)) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)) finSupp 𝑍)
9085, 66, 87, 89syl3anc 1367 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)) finSupp 𝑍)
9120, 3, 2, 33, 47, 48, 1, 51, 63, 82, 90gsumvsmul 19692 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))))
9226, 46, 913eqtr2rd 2863 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3495  cdif 3933  wss 3936  𝒫 cpw 4539  {csn 4561   class class class wbr 5059  cmpt 5139  cres 5552  wf 6346  cfv 6350  (class class class)co 7150  m cmap 8400   finSupp cfsupp 8827  Basecbs 16477  +gcplusg 16559  .rcmulr 16560  Scalarcsca 16562   ·𝑠 cvsca 16563  0gc0g 16707   Σg cgsu 16708  Grpcgrp 18097  invgcminusg 18098  Unitcui 19383  invrcinvr 19415  LModclmod 19628   linC clinc 44452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-0g 16709  df-gsum 16710  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-grp 18100  df-minusg 18101  df-ghm 18350  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-lmod 19630  df-linc 44454
This theorem is referenced by:  lincresunit3  44529
  Copyright terms: Public domain W3C validator